Objective
If the twentieth century was about discovering the basic laws of quantum mechanics, then the twenty first century will be about pushing them to new frontiers and learning how to control them. Condensed matter systems are predicted to host many intriguing and potentially useful quantum phenomena, though materials where they can be realized are rare. This motivates me to seek alternative routes for their realization, and to find new means for controlling quantum many-body systems.
In this project I aim to provide a deeper and broader theoretical understanding of quantum dynamics in driven many-body systems, and to expose new routes for experimental investigation. As a major research theme, my team will investigate possibilities for using time-dependent fields to realize topological phenomena through strong driving. The theoretical description and realization of such phenomena is a multifaceted problem that will serve as a vehicle for elucidating many general aspects of driven quantum dynamics that are relevant on an even broader scale.
To achieve my broad goals I propose an ambitious work plan, organized into three interrelated work packages focused on: 1) characterizing, 2) realizing, and 3) probing the static, dynamic, and topological properties of driven quantum systems. In some cases we will study conceptually pure, minimal models, designed to illustrate the interplay between driving and interactions. We will also investigate realistic, experimentally-motivated models, seeking to understand the key factors and processes that govern the realization of topological phenomena in driven systems, and how to control them. In addition, we will study non-equilibrium probes of correlated systems, focusing on using the nuclear spin environments of electronic systems to probe and control the systems' magnetic properties. Through each of these tracks we will gain valuable new insight into the nature and dynamics of quantum many-body systems, far from equilibrium.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences physical sciences quantum physics
- natural sciences mathematics pure mathematics topology
- natural sciences physical sciences theoretical physics particle physics higgs bosons
- natural sciences physical sciences optics laser physics
- natural sciences physical sciences electromagnetism and electronics superconductivity
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2015-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
1165 Kobenhavn
Denmark
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.