Project description
A multiphysics analysis of the thermoacoustic instabilities in annular combustion chambers
Advanced gas turbine concepts including annular combustors are prone to thermoacoustic instabilities. These can lead to large pressure fluctuations affecting the performance and structural integrity of both stationary turbines and aeroplane engines. Most studies of these instabilities have employed single axisymmetric and isolated flames that incompletely capture complex turbine dynamics. The ERC-funded TAIAC project will studying thermoacoustic instabilities in annular chambers, including the full multiphysics of the system. To do so, the team will develop a new type of annular facility with engine-relevant boundary conditions enabling full 3D characterisation of highly asymmetric flows, enhanced predictive models, and intelligent design.
Objective
It is well known that current and future low-emission combustion concepts for gas turbines are prone to thermoacoustic instabilities. These give rise to large pressure fluctuations that can drastically reduce the operable range and threaten the structural integrity of stationary gas turbines and aero engines. In the last 6 years the development of laboratory-scale annular combustors and high-performance computing based on Large Eddy Simulations (LES) have been able to reproduce thermoacoustic oscillations in annular combustion chambers, giving us unprecedented access to information about their nature.
Until now, it has been assumed that a complete understanding of thermoacoustic instabilities could be developed by studying the response of single axisymmetric flames. Consequently stability issues crop up far into engine development programmes, or in service, because we lack the knowledge to predict their occurrence at the design stage. However, the ability to experimentally study thermoacoustic instabilities in laboratory-scale annular combustors using modern experimental methods has set the stage for a breakthrough in our scientific understanding capable of yielding truly predictive tools.
This proposal aims to break the existing paradigm of studying isolated flames and provide a step change in our scientific understanding by studying thermoacoustic instabilities in annular chambers where the full multiphysics of the problem are present. The technical goals of the proposal are: to develop a novel annular facility with engine relevant boundary conditions; to use this to radically increase our understanding of the underlying physics and flame response, paving the way for the next generation of predictive methods; and to exploit this understanding to improve system stability through intelligent design. Through these goals the proposal will provide an essential bridge between academic and industrial research and strengthening European thermoacoustic expertises.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences physical sciences classical mechanics fluid mechanics fluid dynamics
- natural sciences physical sciences acoustics
- natural sciences computer and information sciences computational science multiphysics
- natural sciences computer and information sciences software software applications simulation software
- engineering and technology environmental engineering energy and fuels energy conversion
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2015-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
7491 TRONDHEIM
Norway
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.