Skip to main content

Data-driven Modelling in Dynamic Networks

Searching for OpenAIRE data...

Publications

A local direct method for module identification in dynamic networks with correlated noise

Author(s): Karthik R. Ramaswamy, Paul M.J. Vandenhof
Published in: IEEE Transactions on Automatic Control, 2019, Page(s) 1-1, ISSN 0018-9286
Publisher: Institute of Electrical and Electronics Engineers
DOI: 10.1109/tac.2020.3035634

Identification of diffusively coupled linear networks through structured polynomial models

Author(s): E.M.M. Kivits, Paul M.J. Van den Hof
Published in: IEEE Transactions on Automatic Control, 00189286, 2023, ISSN 0018-9286
Publisher: Institute of Electrical and Electronics Engineers
DOI: 10.1109/tac.2022.3191406

Excitation allocation for generic identifiability of a single module in dynamic networks: A graphic approach

Author(s): Shengling Shi, Xiaodong Cheng, Paul M.J. Van den Hof
Published in: IFAC-PapersOnLine, 53/2, 2020, Page(s) 40-45, ISSN 2405-8963
Publisher: IFAC
DOI: 10.1016/j.ifacol.2020.12.042

A frequency domain approach for local module identification in dynamic networks

Author(s): Karthik Raghavan Ramaswamy, Péter Zoltán Csurcsia, Johan Schoukens, Paul M.J.Van den Hof
Published in: Automatica, 00051098, 2022, ISSN 0005-1098
Publisher: Pergamon Press Ltd.
DOI: 10.1016/j.automatica.2022.110370

A Bayesian method for inference of effective connectivity in brain networks for detecting the Mozart effect

Author(s): Rik J.C. van Esch, Shengling Shi, Antoine Bernas, Svitlana Zinger, Albert P. Aldenkamp, Paul M.J. Van den Hof
Published in: Computers in Biology and Medicine, 127, 2020, Page(s) 104055, ISSN 0010-4825
Publisher: Pergamon Press Ltd.
DOI: 10.1016/j.compbiomed.2020.104055

Generic identifiability of subnetworks in a linear dynamic network: The full measurement case

Author(s): Shengling Shi, Xiaodong Cheng, Paul M.J. Van den Hof
Published in: Automatica, 00051098, 2022, ISSN 0005-1098
Publisher: Pergamon Press Ltd.
DOI: 10.1016/j.automatica.2021.110093

On Data-Driven Control: Informativity of Noisy Input-Output Data With Cross-Covariance Bounds

Author(s): Tom R. V. Steentjes, Mircea Lazar, Paul M. J. Van den Hof
Published in: IEEE Control Systems Letters, 24751456, 2022, Page(s) 2192 - 2197, ISSN 2475-1456
Publisher: Institute of Electrical and Electronics Engineers Inc.
DOI: 10.1109/lcsys.2021.3139526

Identifiability of linear dynamic networks through switching modules

Author(s): H.J. Dreef, M.C.F. Donkers, Paul M.J. Van den Hof
Published in: IFAC-PapersOnLine, 24058963, 2021, Page(s) 37-42, ISSN 2405-8963
Publisher: Elsevier B.V.
DOI: 10.1016/j.ifacol.2021.08.331

Scalable distributed H2 controller synthesis for interconnected linear discrete-time systems

Author(s): Tom R.V. Steentjes, Mircea Lazar, Paul M.J. Van den Hof
Published in: IFAC-PapersOnLine, 24058963, 2021, Page(s) 66-71, ISSN 2405-8963
Publisher: Elsevier B.V.
DOI: 10.1016/j.ifacol.2021.06.178

Learning linear modules in a dynamic network with missing node observations

Author(s): Karthik R. Ramaswamy, Giulio Bottegal, Paul M.J. Van den Hof
Published in: Automatica, 00051098, 2022, Page(s) 1-16, ISSN 0005-1098
Publisher: Pergamon Press Ltd.
DOI: 10.48550/arxiv.2208.10995

Single module identifiability in linear dynamic networks with partial excitation and measurement

Author(s): Shengling Shi, Xiaodong Cheng, Paul M.J. Van den Hof
Published in: IEEE Transactions Automatic Control, 00189286, 2023, ISSN 0018-9286
Publisher: Institute of Electrical and Electronics Engineers
DOI: 10.1109/tac.2021.3137787

Allocation of Excitation Signals for Generic Identifiability of Linear Dynamic Networks

Author(s): Xiaodong Cheng, Shengling Shi, Paul M.J. Van den Hof
Published in: IEEE Transactions on Automatic Control, 2019, Page(s) 1-1, ISSN 0018-9286
Publisher: Institute of Electrical and Electronics Engineers
DOI: 10.1109/tac.2021.3053540

Excitation Allocation for Generic Identifiability of Linear Dynamic Networks With Fixed Modules

Author(s): H.J. Dreef, Shengling Shi, Xiaodong Cheng, M.C.F. Donkers, Paul M.J. Van den Hof
Published in: IEEE Control Systems Letters, 24751456, 2022, Page(s) 2587-2592, ISSN 2475-1456
Publisher: Institute of Electrical and Electronics Engineers Inc.
DOI: 10.1109/lcsys.2022.3171172

Learning linear modules in a dynamic network using regularized kernel-based methods

Author(s): Karthik Raghavan Ramaswamy, Giulio Bottegal, Paul M.J. Van den Hof
Published in: Automatica, 129, 2021, Page(s) 109591, ISSN 0005-1098
Publisher: Pergamon Press Ltd.
DOI: 10.1016/j.automatica.2021.109591

Handling unmeasured disturbances in data-driven distributed control with virtual reference feedback tuning

Author(s): Tom R.V. Steentjes, Paul M.J. Van den Hof, Mircea Lazar
Published in: IFAC-PapersOnLine, 24058963, 2021, Page(s) 204-209, ISSN 2405-8963
Publisher: Elsevier B.V.
DOI: 10.1016/j.ifacol.2021.08.359

Consistent identification of dynamic networks subject to white noise using Weighted Null-Space Fitting

Author(s): Stefanie Fonken, Mina Ferizbegovic, Håkan Hjalmarsson
Published in: IFAC-PapersOnLine, 53/2, 2020, Page(s) 46-51, ISSN 2405-8963
Publisher: IFAC
DOI: 10.1016/j.ifacol.2020.12.047

Identification in dynamic networks

Author(s): Paul M.J. Van den Hof, Arne G. Dankers, Harm H.M. Weerts
Published in: Computers & Chemical Engineering, 109, 2018, Page(s) 23-29, ISSN 0098-1354
Publisher: Pergamon Press Ltd.
DOI: 10.1016/j.compchemeng.2017.10.005

Identifiability of linear dynamic networks

Author(s): Harm H.M. Weerts, Paul M.J. Van den Hof, Arne G. Dankers
Published in: Automatica, 89, 2018, Page(s) 247-258, ISSN 0005-1098
Publisher: Pergamon Press Ltd.
DOI: 10.1016/j.automatica.2017.12.013

Detecting Nonlinear Modules in a Dynamic Network: A Step-by-Step Procedure

Author(s): M. Schoukens, P.M.J. Van den Hof
Published in: IFAC-PapersOnLine, 51/15, 2018, Page(s) 593-597, ISSN 2405-8963
Publisher: Elsevier
DOI: 10.1016/j.ifacol.2018.09.224

An empirical Bayes approach to identification of modules in dynamic networks

Author(s): Niklas Everitt, Giulio Bottegal, Håkan Hjalmarsson
Published in: Automatica, 91, 2018, Page(s) 144-151, ISSN 0005-1098
Publisher: Pergamon Press Ltd.
DOI: 10.1016/j.automatica.2018.01.011

A sequential least squares algorithm for ARMAX dynamic network identification

Author(s): Harm H.M. Weerts, Miguel Galrinho, Giulio Bottegal, Håkan Hjalmarsson, Paul M.J. Van den Hof
Published in: IFAC-PapersOnLine, 51/15, 2018, Page(s) 844-849, ISSN 2405-8963
Publisher: Elsevier
DOI: 10.1016/j.ifacol.2018.09.119

Combining Experiments for Linear Dynamic Network Identification in the Presence of Nonlinearities

Author(s): M. Schoukens, J.P. Noël, P.M.J. Van den Hof
Published in: Journal of Physics: Conference Series, 1065, 2018, Page(s) 212026, ISSN 1742-6588
Publisher: Institute of Physics
DOI: 10.1088/1742-6596/1065/21/212026

Prediction error identification of linear dynamic networks with rank-reduced noise

Author(s): Harm H.M. Weerts, Paul M.J. Van den Hof, Arne G. Dankers
Published in: Automatica, 98, 2018, Page(s) 256-268, ISSN 0005-1098
Publisher: Pergamon Press Ltd.
DOI: 10.1016/j.automatica.2018.09.033

A recursive estimation approach to distributed identification of large-scale multi-input-single-output FIR systems

Author(s): Tom R.V. Steentjes, Mircea Lazar, Paul M.J. Van den Hof
Published in: IFAC-PapersOnLine, 51/23, 2018, Page(s) 236-241, ISSN 2405-8963
Publisher: Elsevier
DOI: 10.1016/j.ifacol.2018.12.041

On dynamic network modeling of stationary multivariate processes

Author(s): Giulio Bottegal, Alessandro Chiuso, Paul M.J. Van den Hof
Published in: IFAC-PapersOnLine, 51/15, 2018, Page(s) 850-855, ISSN 2405-8963
Publisher: Elsevier
DOI: 10.1016/j.ifacol.2018.09.118

On Representations of Linear Dynamic Networks

Author(s): E.M.M. Kivits, Paul M.J. Van den Hof
Published in: IFAC-PapersOnLine, 51/15, 2018, Page(s) 838-843, ISSN 2405-8963
Publisher: Elsevier
DOI: 10.1016/j.ifacol.2018.09.120

Identification of dynamic networks with rank-reduced process noise * *This work has received funding from the European Research Council (ERC), Advanced Research Grant SYSDYNET, under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 694504).

Author(s): Harm H.M. Weerts, Paul M.J. Van den Hof, Arne G. Dankers
Published in: IFAC-PapersOnLine, 50/1, 2017, Page(s) 10562-10567, ISSN 2405-8963
Publisher: Elsevier
DOI: 10.1016/j.ifacol.2017.08.1319

A scalable multi-step least squares method for network identification with unknown disturbance topology

Author(s): Stefanie J.M.Fonken, Karthik Raghavan Ramaswamy, Paul M.J.Van den Hof
Published in: Automatica, 00051098, 2022, ISSN 0005-1098
Publisher: Pergamon Press Ltd.
DOI: 10.1016/j.automatica.2022.110295

Abstractions of linear dynamic networks for input selection in local module identification

Author(s): Harm H.M. Weerts, Jonas Linder, Martin Enqvist, Paul M.J. Van den Hof
Published in: Automatica, 117, 2020, Page(s) 108975, ISSN 0005-1098
Publisher: Pergamon Press Ltd.
DOI: 10.1016/j.automatica.2020.108975

Identifiability and identification methods for dynamic networks

Author(s): H H M Weerts
Published in: PhD Thesis, 2018
Publisher: Eindhoven University of Technology

Learning local modules in dynamic networks without prior topology information

Author(s): V. Comandoor Rajagopal
Published in: Master Thesis, 2020
Publisher: Eindhoven University of Technology

Topology detection in brain networks

Author(s): R. van Esch
Published in: Master thesis, 2019
Publisher: Eindhoven University of Technology

System Identification of the Inertia and Natural Damping of an Interconnected control Area

Author(s): B.J.T. Ludlage
Published in: Master thesis, 2017
Publisher: Eindhoven University of Technology

Topology detection using Bayesian statistics

Author(s): Răclaru Eduard-Edis
Published in: Master thesis, 2018
Publisher: Eindhoven Unioversity of Technology

Improvements for In-Circuit Testing using RLC Network Identification

Author(s): J.B.T. Meijer
Published in: Master thesis, 2021
Publisher: Eindhoven University of Technology

Data-driven methods for distributed control of interconnected linear systems

Author(s): Tom Robert Vince Steentjes
Published in: PhD thesis, 2022, ISBN 978-90-386-5528-4
Publisher: Eindhoven University of Technology

An iterative algorithm for learning dynamic networks with correlated noise

Author(s): V. C. Rajagopal
Published in: MSc internship report, 2019
Publisher: Eindhoven University of Technology

Multi-step scalable least squares method for network identification with unknown noise topology

Author(s): S.J.M. Fonken
Published in: Master Thesis, 2020
Publisher: Eindhoven University of Technology

Topological aspects of linear dynamic networks: identifiability and identification

Author(s): Shengling Shi
Published in: PhD thesis, 2021, ISBN 978-90-386-5324-2
Publisher: Eindhoven University of Technology

Identification of Continuous-time ARX-Models Subject to Missing Data

Author(s): Yang Song
Published in: Master Thesis, 2018
Publisher: Eindhoven University of Technology

Data-driven modelling and decentralized H2 control of power networks

Author(s): Anupama
Published in: Master thesis, 2021
Publisher: Eindhoven University of Technology

Centralized and distributed identified model based predictive control for Museum Hermitage Amsterdam

Author(s): X. Chen
Published in: Master Thesis, 2019
Publisher: Eindhoven University of Technology

A guide to learning modules in a dynamic network

Author(s): Karthik Raghavan Ramaswamy
Published in: PhD thesis, 2022, ISBN 978-90-386-5500-0
Publisher: Eindhoven University of Technology

Learning local modules in dynamic networks without prior topology information

Author(s): Venkatakrishnan C. Rajagopal, Karthik R. Ramaswamy, Paul M.J. Van Den Hof
Published in: 2021 60th IEEE Conference on Decision and Control (CDC), 2022, Page(s) 840-845, ISBN 978-1-6654-3659-5
Publisher: Institute of Electrical and Electronics Engineers
DOI: 10.1109/cdc45484.2021.9683377

H_infinity performance analysis an distributed controller synthesis for interconnected linear systems from noisy input-state data

Author(s): Tom R.V. Steentjes, Mircea Lazar, Paul M.J. Van den Hof
Published in: 60th IEEE Conference on Decision and Control (CDC 2021), 2022, Page(s) 3723-3728, ISBN 978-1-6654-3659-5
Publisher: Institute of Electrical and Electronics Engineers
DOI: 10.1109/cdc45484.2021.9683126

Learning local modules in dynamic networks

Author(s): Paul M.J. Van den Hof, Karthik R. Ramaswamy
Published in: Proceedings of Machine Learning Research, 26403498, 2021, Page(s) 176-188, ISSN 2640-3498
Publisher: Proceedings of Machine Learning Research

Identifiability in Dynamic Acyclic Networks with Partial Excitation and Measurement

Author(s): Xiaodong Cheng, Shengling Shi, Ioannis Lestas, Paul M. J. Van den Hof
Published in: 2021 European Control Conference, 2021
Publisher: IEEE
DOI: 10.48550/arxiv.2201.07548

A dynamic network approach to identification of physical systems

Author(s): E.M.M. Lizan Kivits, Paul M.J. Van den Hof
Published in: 2019 IEEE 58th Conference on Decision and Control (CDC), 2019, Page(s) 4533-4538, ISBN 978-1-7281-1398-2
Publisher: IEEE
DOI: 10.1109/cdc40024.2019.9030041

Data-driven distributed controller synthesis in the presence of noise: an optimal controller identification approach

Author(s): T R V Steentjes, M Lazar, P M J Van den Hof
Published in: 2021 European Control Conference, 2021
Publisher: IEEE
DOI: 10.23919/ecc54610.2021.9655114

Path-based data-informativity conditions for single module identification in dynamic networks

Author(s): Paul M.J. Van den Hof, Karthik R. Ramaswamy
Published in: 2020 59th IEEE Conference on Decision and Control (CDC), 2020, Page(s) 4354-4359, ISBN 978-1-7281-7447-1
Publisher: IEEE
DOI: 10.1109/cdc42340.2020.9304263

A regularized kernel-based method for learning a module in a dynamic network with correlated noise

Author(s): Venkatakrishnan C. Rajagopal, Karthik R. Ramaswamy, Paul M.J. Van den Hof
Published in: 2020 59th IEEE Conference on Decision and Control (CDC), 2020, Page(s) 4348-4353, ISBN 978-1-7281-7447-1
Publisher: IEEE
DOI: 10.1109/cdc42340.2020.9303879

Generalized sensing and actuation schemes for local module identification in dynamic networks

Author(s): Karthik R. Ramaswamy, Paul M. J. Van den Hof, Arne G. Dankers
Published in: 2019 IEEE 58th Conference on Decision and Control (CDC), 2019, Page(s) 5519-5524, ISBN 978-1-7281-1398-2
Publisher: IEEE
DOI: 10.1109/cdc40024.2019.9029338

From closed-loop identification to dynamic networks: Generalization of the direct method

Author(s): Paul M.J. Van den Hof, Arne G. Dankers, Harm H.M. Weerts
Published in: 2017 IEEE 56th Annual Conference on Decision and Control (CDC), 2017, Page(s) 5845-5850, ISBN 978-1-5090-2873-3
Publisher: IEEE
DOI: 10.1109/cdc.2017.8264543

Prediction error identification with rank-reduced output noise

Author(s): Paul M.J. Van den Hof, Harm H.M. Weerts, Arne G. Dankers
Published in: 2017 American Control Conference (ACC), 2017, Page(s) 382-387, ISBN 978-1-5090-5992-8
Publisher: IEEE
DOI: 10.23919/acc.2017.7962983

Identification in dynamic networks

Author(s): P.M.J Van den Hof, A.G. Dankers, H.H.M. Weerts
Published in: Proc. Foundations of Computer Aided Process Operations / Chemical Process Control FOCAPO/CPC 2017, 2017
Publisher: FOCAPO/CPC 2017

Single Module Identifiability in Linear Dynamic Networks

Author(s): Harm Weerts, Paul M.J. Van den Hof, Arne Dankers
Published in: 2018 IEEE Conference on Decision and Control (CDC), 2018, Page(s) 4725-4730, ISBN 978-1-5386-1395-5
Publisher: IEEE
DOI: 10.1109/cdc.2018.8619365

Local Module Identification in Dynamic Networks Using Regularized Kernel-Based Methods

Author(s): Karthik R. Ramaswamy, Giulio Bottegal, Paul M.J. Van den Hof
Published in: 2018 IEEE Conference on Decision and Control (CDC), 2018, Page(s) 4713-4718, ISBN 978-1-5386-1395-5
Publisher: IEEE
DOI: 10.1109/cdc.2018.8619436

Bayesian topology identification of linear dynamic networks

Author(s): Shengling Shi, Giulio Bottegal, Paul M. J. Van den Hof
Published in: 2019 18th European Control Conference (ECC), 2019, Page(s) 2814-2819, ISBN 978-3-907144-00-8
Publisher: IEEE
DOI: 10.23919/ecc.2019.8795766

Informativity conditions for data-driven control based on input-state data and polyhedral cross-covariance noise bounds

Author(s): T R V Steentjes, M Lazar, P M J Van den Hof
Published in: International Symposium on Mathematical Theory of Networks and Systems, 2022, Page(s) 816-821
Publisher: MTNS
DOI: 10.48550/arxiv.2202.09266

Data-driven distributed control: Virtual reference feedback tuning in dynamic networks

Author(s): Tom R.V. Steentjes, Mircea Lazar, Paul M.J. Van den Hof
Published in: 2020 59th IEEE Conference on Decision and Control (CDC), 2020, Page(s) 1804-1809, ISBN 978-1-7281-7447-1
Publisher: IEEE
DOI: 10.1109/cdc42340.2020.9304099

Local module identification in dynamic networks with correlated noise: the full input case

Author(s): Paul M.J. Van den Hof, Karthik R. Ramaswamy, Arne G. Dankers, Giulio Bottegal
Published in: 2019 IEEE 58th Conference on Decision and Control (CDC), 2019, Page(s) 5494-5499, ISBN 978-1-7281-1398-2
Publisher: IEEE
DOI: 10.1109/cdc40024.2019.9029448

Bayesian topology identification of linear dynamic networks

Author(s): Shengling Shi, Giulio Bottegal, Paul M. J. Van den Hof
Published in: Technical Report, 2018
Publisher: Eindhoven University of Technology

Abstractions of linear dynamic networks for input selection in local module identification

Author(s): Weerts, Harm H. M.; Linder, Jonas; Enqvist, Martin; Hof, Paul M. J. Van den
Published in: Technical report, 2, 2019
Publisher: Eindhoven University of Technology

Scalable distributed and decentralized H2 controller synthesis for interconnected linear discrete-time systems

Author(s): Tom R. V. Steentjes, Mircea Lazar, Paul M. J. Van den Hof
Published in: Technical report, 2019
Publisher: Eindhoven University of Technology