Objective
"Project FLOWSPA (Floating Offshore Wind Support Platform Assembly) will demonstrate the feasibility of an innovative floating offshore wind foundation structure “Starfloat” that combines “spar” technology with “semi-submersible” technology to provide a compact and cost effective low motion platform for supporting large capacity wind turbines at deep-water offshore wind farm sites. Energy analysts have predicted that, if a viable and cost effective technology can be delivered, the deep-water offshore wind market in Europe could meet 50% of Europe’s electricity requirement by 2050. Unlike competitor technologies the simple scalable ""Starfloat"" is designed for construction at existing shipbuilding facilities with restricted water depth thus opening up construction opportunities for European shipyards that are currently in decline. The innovative floating foundation design and assembly process takes significant cost out of the CAPEX of deep water floating offshore wind projects and removes the need for risky offshore marine operations. ""Starfloat"" therefore has the potential to be disruptive to the current perceived limitations of the offshore wind industry by bring floating offshore wind into the same levelised cost of energy (LCOE) as fixed foundation offshore wind. This will allow the project financing of deeper water wind farm sites, where the wind resource is stronger and more reliable, to be exploited using relatively low risk technology with the end result of reducing carbon emissions and reduced dependency for Europe on imported fuels. It also has the benefit of bringing steel fabrication work to declining shipyards and assembly work to deep-water offshore construction sites that are currently seeing a sharp decline in activity with the fall in the oil price and the collapse of the new shipbuilding market."
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technologycivil engineeringwater engineeringocean engineering
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectrical engineeringpower engineeringelectric power generation
- social scienceseconomics and businesseconomics
- engineering and technologyenvironmental engineeringenergy and fuelsrenewable energywind power
- engineering and technologymechanical engineeringvehicle engineeringnaval engineeringsea vessels
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback.
You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
- H2020-EU.3.3. - SOCIETAL CHALLENGES - Secure, clean and efficient energy Main Programme
- H2020-EU.2.1.1. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Information and Communication Technologies (ICT)
- H2020-EU.2.3.1. - Mainstreaming SME support, especially through a dedicated instrument
Call for proposal
(opens in new window) H2020-SMEInst-2016-2017
See other projects for this callSub call
H2020-SMEINST-1-2016-2017
Funding Scheme
SME-1 - SME instrument phase 1Coordinator
NE30 1DT NORTH SHIELDS
United Kingdom
The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.