CORDIS
EU research results

CORDIS

English EN

Fluorescence-based photosynthesis estimates for vegetation productivity monitoring from space

Objective

Global food security will remain a worldwide concern for the next 50 years and beyond. Agricultural production undergoes an increasing pressure by global anthropogenic changes, including rising population, increased protein demands and climatic extremes. Because of the immediate and dynamic nature of these changes, productivity monitoring measures are urgently needed to ensure both the stability and continued increase of the global food supply. Europe has expressed ambitions to keep its fingers on the pulse of its agricultural lands. In response to that, this proposal - named SENTIFLEX - is dedicated to developing a European vegetation productivity monitoring facility based on the synergy of Sentinel-3 (S3) with FLEX satellite fluorescence data. ESA's 8th Earth Explorer FLEX is the first mission specifically designed to globally measure Sun-Induced chlorophyll Fluorescence (SIF) emission from terrestrial vegetation. These two European Earth observation missions offer immense possibilities to increase our knowledge of the basic functioning of the Earth’s vegetation, i.e., the photosynthetic activity of plants resulting in carbon fixation. Two complementary approaches are envisioned to realize quantification of photosynthesis through satellite SIF and S3. First, the work seeks to advance the science in establishing and consolidating relationships between canopy-leaving SIF and unbiased estimates of photosynthesis of the plants, thereby disentangling the role of dynamic vegetative and atmospheric variables. Second, consolidated relationships between SIF and photosynthesis will be used to build a FLEX-S3 data processing assimilation scheme through process-based vegetation models that will deliver spatiotemporally highly resolved information on Europe’s vegetation productivity. To streamline all these datasets into a prototype vegetation productivity monitoring facility, new data processing concepts will be introduced such as the emulation of radiative transfer models.

Host institution

UNIVERSITAT DE VALENCIA

Address

Avenida Blasco Ibanez 13
46010 Valencia

Spain

Activity type

Higher or Secondary Education Establishments

EU Contribution

€ 1 499 587

Beneficiaries (1)

Sort alphabetically

Sort by EU Contribution

Expand all

UNIVERSITAT DE VALENCIA

Spain

EU Contribution

€ 1 499 587

Project information

Grant agreement ID: 755617

Status

Ongoing project

  • Start date

    1 January 2018

  • End date

    31 December 2022

Funded under:

H2020-EU.1.1.

  • Overall budget:

    € 1 499 587

  • EU contribution

    € 1 499 587

Hosted by:

UNIVERSITAT DE VALENCIA

Spain