Objective
Magnetic resonance (MR) imaging and spectroscopy critically relies on the homogeneity of the main field. Despite of the best technological efforts magnetic field in MR examinations cannot be made homogeneous due to the presence of the object of investigation – the human or an animal – in the magnet. Heterogeneous and unique distribution of tissues with their characteristic magnetic susceptibilities requires the process of field homogenization, termed shimming, to be performed on a subject-by-subject basis. Shimming subsystems of the clinical MRI devices often show insufficient, leading to sub-optimal image quality and even failing diagnosis. Furthermore, numerous emerging methods, while showing their great potential in research settings, require even better shim fidelity. We therefore identify improved shimming as a current unmet need in MRI. Add-on hardware for more reliable shimming will greatly aid MRI research especially in the field of ultra-high imaging, such as 7T and above. A wider availability of improved shimming capabilities in the clinical machines will accelerate the transition of a multitude of current promising scientific applications of MRI to the clinical practise, allowing for a more precise diagnosis and improved patient outcomes.
The current project will aid a wider spread of the emerging shimming techniques, not based on spherical harmonics. As these techniques require a higher number of electrically controlled driving channels, the project addresses the scalability problem of the current shim amplifier technology by bringing the equipment closer to the magnet and eliminating a substantial number of expensive and error-prone components. It is therefore to expect that the novel system topology will make future MRI devices cheaper and more reliable, reducing the production, citing and maintenance costs. Collaboration with a European power amplifier manufacturer will ensure market-driven developments and a rapid dissemination of the results.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-POC - Proof of Concept Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2016-PoC
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
79106 Freiburg
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.