Objective
Riveting is the defacto method for the assembly of aluminium aerostructures, with large commercial aircraft fuselages typically containing 100’000s of rivets. However, riveting is known as a time-consuming, expensive and weight-adding operation. From a design perspective, it also places holes and point loads in a cyclically pressurised structure, subject to long-term fatigue loading and corrosion. Thus is not an ideal solution for these types of structures.
With developments in precision laser beam welding (LBW) and friction stir welding (FSW), it is now possible to fabricate “rivetless” aluminium aerostructures using welding processes. These new processes produce a lighter weight, distributed load path with the potential for enhanced strength and structural stiffness, ‘no holes’ and a smoother (more aerodynamic) surface. In addition to being more structurally efficient, the new processes are cheaper and reduce inspection & maintenance requirements.
The OASIS project will establish and demonstrate the cost-effectiveness of manufacturing aluminium aircraft structures using the latest developments in LBW and FSW (with appropriate inspection to aerospace standards). The project is led by TWI, who are leaders in both LBW and FSW techniques. Together with 6 other European organisations, we will design, demonstrate and evaluate the suitability of a range of process variants in creating optimised aluminium aircraft structures, including appropriateness for emerging alloys (e.g. 3rd generation Al-Li, 2nd gen Scalmalloy®). ESAB who will offer a commercial route for adoption of suitable processes; as suppliers of both LBW and FSW solutions to the European aerospace supply-chain (and who hold unique FSW IP).
The impact of OASIS will ultimately allow improved design and manufacture of lighter-weight aluminium aircraft structures. This will contribute to the flightpath 2050 goals of reduced fuel burn, superior operating efficiencies and reduced emissions.
Fields of science
- engineering and technologymechanical engineeringvehicle engineeringaerospace engineeringaircraft
- natural scienceschemical sciencesinorganic chemistrypost-transition metals
- engineering and technologymechanical engineeringvehicle engineeringaerospace engineeringaeronautical engineering
- engineering and technologyenvironmental engineeringenergy and fuels
- natural sciencesphysical sciencesopticslaser physics
Programme(s)
Funding Scheme
CS2-RIA - Research and Innovation action
Coordinator
CB21 6AL Cambridge
United Kingdom
See on map
Participants (6)
40277 Göteborg
See on map
013975 Bucuresti
See on map
19000 Praha 18
See on map
461 86 Trollhattan
See on map
6041 Gosselies
See on map
The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.
BT7 1NN Belfast
See on map