Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Spatio-Temporal Representation on Neuromorphic Architecture

Objective

The latest achievements in artificial intelligence and neural networks, especially deep neural architecture in large-scale neuromorphic hardware implementation such as SpiNNaker, and in cognitive robotics and neurorobotics, with the widespread use of robots such as iCub and the latest Pepper platform, provide the opportunity to significantly advance our understand human cognition and brains and to reach human-level artificial intelligence. One of the key success factors in deep learning is its hierarchical structure inspired by biological processes in the primate visual cortex, as with convolutional deep networks able to learn rich representations. They are grounded in optimization methods with high precision for training may consume large training datasets and computational resources to learn complex tasks. That gives human level performance in static image recognition but raises adaptation issues. SpiNNaker is a neuromorphic computer architecture in massively parallel computing platform based on spiking neural networks (SNNs) in which neurons communicate by temporal code. The aim of STRoNA (Spatio-Temporal Representation on Neuromorphic Architecture) is to define the technology that will map a computational architecture onto neuromorphic computing circuits, hence to develop a cognitive model with spatio-temporal representation and learning algorithm for humanoid robots.
The principal research objectives of the project are: (i) to investigate which spatio-temporal representations of spikes (or neural action potentials) can be used to achieve human level performance on visual perception; (ii) to develop a novel method to process spatio-temporal representation on a neuromorphic architecture to enable learning in online and interactive contexts; and (iii) to validate and adapt the developed system in real world robotics applications.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF-EF-ST - Standard EF

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2017

See all projects funded under this call

Coordinator

THE UNIVERSITY OF MANCHESTER
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 195 454,80
Address
OXFORD ROAD
M13 9PL Manchester
United Kingdom

See on map

Region
North West (England) Greater Manchester Manchester
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 195 454,80
My booklet 0 0