Project description
Probing heat behaviour in granular materials
Granular materials are the second most abundant materials on Earth after fluids. They make up the soil, sand and gravel we walk on, the grains we use in cooking and the powders we use for medicine. However, despite the fact that these materials are ubiquitous, scientists still lack a mechanistic understanding of their thermochemical behaviour. Funded by the Marie Skłodowska-Curie Actions programme, the MatheGram project aims to develop new numerical models and experimental techniques to predict and characterise heat generation and transfer as well as thermal effects on granular materials. Improved understanding of their thermochemical behaviour will enable their use in new applications, such as additive manufacturing, powder coating and composite material development.
Objective
Granular materials are ubiquitous in nature and in various industries, such as chemicals, pharmaceuticals, food and ceramics. Their thermomechanical behaviours are governed by the interactions between solid particles, as well as between particles and the surrounding media (gas or liquid). Although granular materials have been investigated extensively, there are still some unsolved challenging issues concerning the thermomechanical behaviours, including heat generation (i.e. self-heating) and transfer, and thermal effects on material properties and process performance. Furthermore, the unique thermomechanical attributes have led to emerging applications with granular materials, such as additive manufacturing, powder coating, high quality composites, insulation and efficient thermal processing for energy conservation, but there is a lack of mechanistic understanding of thermomechanical behaviour of granular materials in these emerging applications. MATHEGRAM will hence deliver a timely, concerted research and training programme to address these challenges, bringing together a multi-disciplinary and inter-sectorial consortium consisting of 6 leading academic institutes, 4 non-academic beneficiaries and 6 partner organisations from 8 EU member states. Our vision is to develop robust new numerical models and novel experimental techniques that can predict and characterise heat generation and transfer, as well as thermal effects in granular materials. The enhanced mechanistic understanding of granular materials will enable them to be used in diverse industries, while also achieving energy conservation and CO2 emission reduction. We will also train a cohort of 15 ESRs with balanced gender, who will be the next generation scientific and technological leaders with competency and the research and transferable skills to work effectively across disciplinary and sectoral boundaries.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology materials engineering composites
- natural sciences physical sciences condensed matter physics soft matter physics
- engineering and technology materials engineering coating and films
- engineering and technology mechanical engineering manufacturing engineering additive manufacturing
- engineering and technology materials engineering ceramics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.1. - Fostering new skills by means of excellent initial training of researchers
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-ITN - Marie Skłodowska-Curie Innovative Training Networks (ITN)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-ITN-2018
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
GU2 7XH Guildford
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.