Objective
How do human infants develop complex cognition? We propose that artificial intelligence (AI) provides crucial insight into human curiosity-driven learning and the development of infant cognition. Deep learning—a technology that has revolutionised AI—involves the acquisition of informative internal representations through pre-training, as a critical precursory step to learning any specific task. We propose that, similarly, curiosity guides human infants to develop ‘hidden’ mature mental representations through pre-training well before the manifestation of behaviour. To test this proposal, for the first time we will use neuroimaging to measure the hidden changes in representations during infancy and compare these to predictions from deep learning in machines. Research Question 1 will ask how infants guide pre-training through directed curiosity, by testing quantitative models of curiosity adapted from developmental robotics. We will also test the hypothesis from pilot data that the fronto-parietal brain network guides curiosity from the start. Research Question 2 will further test the parallel with deep learning by characterising the developing infant’s mental representations within the visual system using the powerful neuroimaging technique of representational similarity analysis. Research Question 3 will investigate how individual differences in curiosity affect later cognitive performance, and test the prediction from deep learning that the effects of early experience during pre-training grow rather than shrink with subsequent experience. Finally, Research Question 4 will test the novel prediction from deep learning that, following perinatal brain injury, pre-training creates resilience provided that curiosity is intact. The investigations will answer the overarching question of how pre-training learning lays the foundations for cognition and pioneer the new field of Computational Developmental Cognitive Neuroscience.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences biological sciences neurobiology
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering robotics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2017-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
D02 CX56 Dublin
Ireland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.