Project description
Novel solid-state hydrogen storage facilitating the energy transition
Energy storage is essential to the full exploitation of renewable energy sources given their intermittent availability. Hydrogen has the highest energy density of all known substances, about three times higher than diesel or gasoline. However, in the gas state, the volumetric density of hydrogen is very low and a strong compression is necessary to store it, with significant energy consumption. The EU-funded HyCARE project is developing a novel way to store hydrogen in the solid-state, using metal hydrides. It will also store energy as heat through phase change materials, boosting energy resources and efficiency. The combined solid-state hydrogen and heat storage tanks will be integrated with technology to both produce hydrogen for storage and use it.
Objective
The main objective of the HyCARE project is the development of a prototype hydrogen storage tank with use of a solid-state hydrogen carrier on large scale. The tank will be based on an innovative concept, joining hydrogen and heat storage, in order to improve energy efficiency of the whole system. The developed tank will be installed in the site of ENGIE LAB CRIGEN, which is a research and operational expertise center dedicated to gas, new energy sources and emerging technologies. The center and its 350 staff are located at Plaine Saint-Denis and Alfortville in the Paris Region (F). In particular, the solid-state hydrogen tank will be installed in a Living Lab aimed to develop and explore innovative energy storage solutions. The developed tank will be joined with a PEM electrolyzer as hydrogen provider and a PEM fuel cell as hydrogen user.
The following goals are planned in HyCARE:
- High quantity of stored hydrogen >= 50 kg
- Low pressure < 50 bar and low temperature < 100°C
- Low foot print, comparable to liquid hydrogen storage
- Innovative design
- Hydrogen storage coupled with thermal energy storage
- Improved energy efficiency
- Integration with an electrolyser (EL) and a fuel cell (FC)
- Demonstration in real application
- Improved safety
- Techno-economical evaluation of the innovative solution
- Analysis of the environmental impact via Life Cycle Analysis (LCA)
- Exploitation of possible industrial applications
- Dissemination of results at various levels
- Engagement of local people and institution in the demonstration site
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology mechanical engineering thermodynamic engineering heat engineering
- engineering and technology environmental engineering energy and fuels fuel cells
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.3.3. - SOCIETAL CHALLENGES - Secure, clean and efficient energy
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.3.3.8.2. - Increase the energy efficiency of production of hydrogen mainly from water electrolysis and renewable sources while reducing operating and capital costs, so that the combined system of the hydrogen production and the conversion using the fuel cell system can compete with the alternatives for electricity production available on the market
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-JTI-FCH-2018-1
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
10124 TORINO
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.