Skip to main content
An official website of the European UnionAn official EU website
European Commission logo
English English
CORDIS - EU research results
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Metabolic Regulation of Conventional Dendritic Cell Development and Function

Project description

Unravelling dendritic cells' mechanism – our alarm system

Dendritic cells (DCs) are like guards protecting our body's kingdom against invaders. They identify, process, and present culprits to T-lymphocytes, thus forming the bridge between innate sensing of pathogens and activation of adaptive immunity. Despite their critical role in health and disease, DCs and their complex mechanisms are not well-characterised. With the support of the Marie Curie programme, EU-funded scientists have set out to discover the biochemical pathways responsible for DC differentiation, development, and communication with T-cells. This will provide important insight into potential treatments for viral infections and cancer.

Objective

Dendritic cells (DCs) play critical roles in directing innate and adaptive immune responses against infections and cancer. Understanding the mechanisms that control DC development and function may reveal new ways to alter the course of complex human diseases such as cancer. Despite their importance in immunity, some open questions remain in regards to DC basic biology. Two of these questions, in particular, are the subject of this application: 1) DCs are a heterogenous population, which can be subdivided into conventional DC type 1 (cDC1) and 2 (cDC2) subsets. Although their development depends on distinct transcriptional programs, cDC1 and cDC2 descend from a common precursor under the influence of the same growth factor cytokine. What determines cDC1/2 differentiation? 2) Various loss-of-function studies demonstrate that cDC1 are key antigen-presenting cells for initiating CD8+ T cell responses to tumours and some viruses. This primarily relies on a process termed cross-presentation. How is cross-presentation regulated in cDC1? Recent studies indicate that profound changes in cellular metabolism are coupled to immune cell function and may fundamentally underpin cell-fate decisions. Based on previous observations and our own preliminary data, we hypothesise that glycolysis programs cDC1 development and activation, whereas fatty acid metabolism controls the ability of the same cells to cross-present antigens to CD8+ T cells. We propose to define the metabolic programs that drive DC formation and that underlie cDC1 and cDC2 identity and complement this approach with loss and gain-of-function experiments that will allow specific testing of our hypotheses. Globally, these studies will identify novel mechanisms of immune cell control with implications for antiviral and anticancer immunity.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.

You need to log in or register to use this function

Coordinator

THE FRANCIS CRICK INSTITUTE LIMITED
Net EU contribution
€ 212 933,76
Total cost
€ 212 933,76