Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Metabolic Regulation of Conventional Dendritic Cell Development and Function

Project description

Unravelling dendritic cells' mechanism – our alarm system

Dendritic cells (DCs) are like guards protecting our body's kingdom against invaders. They identify, process, and present culprits to T-lymphocytes, thus forming the bridge between innate sensing of pathogens and activation of adaptive immunity. Despite their critical role in health and disease, DCs and their complex mechanisms are not well-characterised. With the support of the Marie Curie programme, EU-funded scientists have set out to discover the biochemical pathways responsible for DC differentiation, development, and communication with T-cells. This will provide important insight into potential treatments for viral infections and cancer.

Objective

Dendritic cells (DCs) play critical roles in directing innate and adaptive immune responses against infections and cancer. Understanding the mechanisms that control DC development and function may reveal new ways to alter the course of complex human diseases such as cancer. Despite their importance in immunity, some open questions remain in regards to DC basic biology. Two of these questions, in particular, are the subject of this application: 1) DCs are a heterogenous population, which can be subdivided into conventional DC type 1 (cDC1) and 2 (cDC2) subsets. Although their development depends on distinct transcriptional programs, cDC1 and cDC2 descend from a common precursor under the influence of the same growth factor cytokine. What determines cDC1/2 differentiation? 2) Various loss-of-function studies demonstrate that cDC1 are key antigen-presenting cells for initiating CD8+ T cell responses to tumours and some viruses. This primarily relies on a process termed cross-presentation. How is cross-presentation regulated in cDC1? Recent studies indicate that profound changes in cellular metabolism are coupled to immune cell function and may fundamentally underpin cell-fate decisions. Based on previous observations and our own preliminary data, we hypothesise that glycolysis programs cDC1 development and activation, whereas fatty acid metabolism controls the ability of the same cells to cross-present antigens to CD8+ T cells. We propose to define the metabolic programs that drive DC formation and that underlie cDC1 and cDC2 identity and complement this approach with loss and gain-of-function experiments that will allow specific testing of our hypotheses. Globally, these studies will identify novel mechanisms of immune cell control with implications for antiviral and anticancer immunity.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2018

See all projects funded under this call

Coordinator

THE FRANCIS CRICK INSTITUTE LIMITED
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 212 933,76
Address
1 MIDLAND ROAD
NW1 1AT London
United Kingdom

See on map

Region
London Inner London — West Camden and City of London
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 212 933,76
My booklet 0 0