Project description
Capturing quantum dynamics on the picosecond scale
A key quantity used to characterise the performance of a quantum device is the ratio between two characteristic times: the time a qubit can survive its quantum properties and the time it takes to complete its operation. Most technologies inherently work at the nanosecond scale. The EU-funded UltraFastNano project will pioneer new concepts at the crossroads between quantum optics and solid-state nanoelectronics. Its aim is to achieve full control of quantum excitations that propagate through the devices on the picosecond scale, about three orders of magnitude faster than other quantum technologies. The project is expected to demonstrate flying qubits, picosecond electronic detectors and picosecond optoelectronic devices.
Objective
A key figure of merit of quantum technologies is the ratio between two characteristic times: the (decoherence) time during which a quantum state remains well defined and the time it takes for operating the device. Most technologies inherently work at the nano-second scale, hence concentrate on fighting decoherence processes. The goal of UltraFastNano is to pioneer new concepts at the crossroads between quantum optics and solid-state nanoelectronics at the pico-second scale, almost three orders of magnitude faster than other quantum technologies. Using fermionic flying excitations created with pico-second controlled voltage pulses at cryogenics temperatures (10 mK), we envision achieving full control of quantum excitations that propagate through electronic devices. A key deliverable of UltraFastNano is (i) the demonstration of the first electronic flying quantum bit, a paradigm-shifting approach to quantum computing and quantum communication. Besides, such a technology would enable major new applications such as (ii) electronic sources and detectors that operate at the picosecond scale; (iii) picosecond optoelectronic devices that convert between electronic and photon pulses; (iv) beyond state-of-the-art metrological measurement of the ampere. To achieve this vision, UltraFastNano will establish a unique unprecedented platform for creating, manipulating and detecting quasi-particles excitations at the single-electron level in semiconductor heterostructures. We will unlock two major technological bottlenecks: a picosecond on-demand coherent single particle source and the single-shot detection of propagating excitations at the discrete charge level. UltraFastNano gathers a team with complementary expertise in quantum nano-electronics, optics, nano-fabrication, microwave electronics, cryogenics, theoretical physics, applied mathematics and software engineering. The partners are internationally recognised for having played a key role in the emergence of the field.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences computer and information sciences software
- natural sciences physical sciences electromagnetism and electronics semiconductivity
- engineering and technology nanotechnology nanoelectronics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.2. - EXCELLENT SCIENCE - Future and Emerging Technologies (FET)
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.2.1. - FET Open
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-FETOPEN-2018-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75794 PARIS
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.