Project description
Advanced tools for corrosion fatigue prediction
Corrosion and fatigue are the main factors responsible for damages and catastrophic failures in nearly all engineering structures. As such, understanding and predicting corrosion and fatigue are fundamental for the mechanics of materials. The EU-funded SIMCOFAT project will develop new ultra-efficient computational tools to resolve the microstructural character of the problem. The project will combine advanced multiphysics and damage models with a new class of algorithms, the fast Fourier transforms. SIMCOFAT will compare the predictions from these physically based models with the results of a complementary experimental campaign and use them to predict corrosion fatigue in an industrial context.
Objective
Nearly all engineering structures are exposed to harmful environments and alternating mechanical loads during their service life. The combination of these two factors, corrosion and fatigue, accelerates damage and frequently leads to catastrophic failures much before the expected lifespan of the component. Understanding and predicting corrosion fatigue is considered the ultimate challenge in mechanics of materials, due to its complex multi-disciplinary and multi-scale nature. This proposal aims at achieving a breakthrough by developing new ultra-efficient computational tools that will enable resolving the microstructural character of the problem. Advanced multi-physics and damage (phase field) models will be combined with a new class of algorithms, so-called Fast Fourier Transforms (FFT), that can reduce the computational cost of resolving the microstructural behaviour of materials by several orders of magnitude. The predictions from this new generation of physically-based models will be compared with the outcome of a complementary experimental campaign and ultimately used to predict corrosion fatigue in an industrial context. The feasibility of this Action is strengthened by the applicant's pioneering work in fatigue FFT modelling and the complementary expertise of the host group in environmentally assisted damage, phase field modelling and experimental characterisation.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
SW7 2AZ London
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.