Objective
Small scale stationary Combined Heat and Power (µ-CHP) generation is foreseen as a significant future market for fuel cells. Among the fuel cell types, the Proton Exchange Membrane Fuel Cell (PEMFC) technology is by far dominating the small scale stationary demonstration and field trials (~90%). The PEMFC has advantages related to high electric efficiency and excellent load following properties. A major hurdle to commercialisation, however, is their insufficient lifetime under realistic operation conditions. KEEPEMALIVE aims to establish improved understanding of degradation and failure mechanisms, accelerated stress test protocols, sensitivity matrix and lifetime prediction models for Low Temperature PEMFC to enable a lifetime of 40 000h at realistic operation conditions for stationary systems, in compliance with performance and costs targets. Main KEEPEMALIVE targets are to establish a robust and efficient methodology to identify & quantify main factors (and interactions) causing degradation/failure when imposed to stressing conditions and to characterise changes in PEMFC materials’ properties and corresponding performance losses using statistical designed experiments KEEPEMALIVE uses an integrated, iterative approach, using advanced statistical experiment design and result evaluation. Quantitative data obtained in situ from cell &stack tests under stressing conditions, are complemented by ex situ testing of materials, revealing corresponding changes in properties. Joint efforts of SMEs, energy companies and research community, including links to other related European activities, will contribute to strengthening Europe’s competitiveness in this area.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectrical engineeringpower engineeringelectric power generationcombined heat and power
- engineering and technologyenvironmental engineeringenergy and fuelsfuel cells
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback.
You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Call for proposal
FCH-JU-2008-1
See other projects for this call
Coordinator
7034 Trondheim
Norway