Skip to main content
An official website of the European UnionAn official EU website
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Content archived on 2024-06-18

Large Area Molecularly Assembled Nanopatterns for Devices

Objective

Scaling has driven the microelectronics industry for over 40 years and revolutionised information and communication technologies, health care, education, engineering, etc. Maintaining progress has becomes more challenging and costs of fabrication facilities are rising exponentially. Possible technical/cost solutions centre on development of ‘bottom-up’ techniques to (nano)pattern (the patterns yield device elements) surfaces rather than ‘top-down’ photolithographic (PL) methods that are the major cost of manufacturing circuitry (a single PL system is ~€65 million for next generation devices). Self-assembly is one route to nanopatterns but regularity/alignment over large areas is not consistent with circuit manufacture. Recent work on the self-assembly of block-copolymer (BCP) systems suggests that realisation of patterns of small feature size (~10 nm), at high density (i.e. spaced at ~10 nm), in precisely defined positions (to an accuracy of < 10 nm) on a large area substrate (12”) is possible. This proposal will develop BCP methodology into a set of process techniques for subsequent industrial pre-development. The methodology centres around a combination of bottom-up and top-down techniques to provide the fidelity required to make the methods reproducible and reliable. This proposal would have significant value:- - Enable continued development of devices towards their ultimate performance. - Allow development of advanced circuitry at lower costs. - Prevent monopolisation of the semiconductor industry by 1 or 2 companies that can afford capital costs by opening the market to new competition. - Afford the EU with opportunities to develop profitable companies in materials, process equipment and emerging device technologies. Without a suitable EU-level engagement in this area, competition in the US and Asia will gain a significant technological lead that will minimise the EU’s potential to deliver new and advanced nano-electronic devices.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Call for proposal

FP7-NMP-2009-SMALL-3
See other projects for this call

Coordinator

UNIVERSITY COLLEGE CORK - NATIONAL UNIVERSITY OF IRELAND, CORK
EU contribution
€ 603 634,00
Address
WESTERN ROAD
T12 YN60 Cork
Ireland

See on map

Region
Ireland Southern South-West
Activity type
Higher or Secondary Education Establishments
Links
Total cost
No data

Participants (8)