Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Non-Hermitian Topological Physics in Grand Canonical Photon Lattices

Project description

Reconfigurable photonic materials with new topological states

Real systems are never truly isolated from their surroundings, they always exchange matter or energy. How the environment affects the topologically protected states remains to a large extent unknown. The EU-funded TOPOGRAND project will investigate the openness of non-Hermitian systems that can provide fundamentally new ways to create novel topological states of matter. Researchers will develop a new experimental platform to synthesise non-Hermitian topological materials. TOPOGRAND will introduce a completely new approach to topology, offering the possibility to create reconfigurable photonic materials with topological protection simply by controlling the environment. This platform will enable researchers to explore the emerging links between photonics, condensed matter systems and quantum computing, and emulate finite-temperature topological systems.

Objective

Topology is a powerful paradigm for the classification of phases of matter. One of its direct manifestations in the widely studied Hermitian systems, which are isolated from the environment, are robust states that emerge at the interfaces between matter with distinct topological order. Real systems, however, are never truly isolated from their surroundings and the influence of the environment on the topologically protected states remains to a large extent unknown. Even more importantly, understanding and controlling the openness of non-Hermitian systems can provide fundamentally new ways to create novel topological states of matter. TopoGrand will realise a new experimental platform to synthesise non-Hermitian topological materials. It will employ a room-temperature photonic platform combining nanostructured optical microcavities with a molecular medium, to achieve non-Hermitian topological lattices of photon condensates. The system will feature tuneable openness that is unique among other presently available experimental platforms: a controlled flux of excitations via spatially selective pumping and loss, energy dissipation at variable rates, and coherence modified by grand canonical reservoirs. New physics will be accessed in the course of this work: TopoGrand will demonstrate genuine non-Hermitian topological phases and edge states without a Hermitian counterpart. Specifically, we will test the emergence of interface states at a topological phase boundary and their robustness against lattice disorder, as well as reservoir-induced fluctuations. The project presents a completely new approach to topology, which will allow us to create reconfigurable photonic materials with topological protection simply by controlling the environment. With the novel toolbox, I will explore the emerging links between photonics, condensed matter systems and quantum computing, and emulate finite-temperature topological systems, which are at the forefront of research in quantum physics.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2021-STG

See all projects funded under this call

Host institution

RUPRECHT-KARLS-UNIVERSITAET HEIDELBERG
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 927 500,00
Address
SEMINARSTRASSE 2
69117 Heidelberg
Germany

See on map

Region
Baden-Württemberg Karlsruhe Heidelberg, Stadtkreis
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 927 500,00

Beneficiaries (2)

My booklet 0 0