Project description
Game-changing battery technology for energy storage
The EU-funded MeBattery project aims to lay the foundations of a next-generation battery technology that will potentially help overcome the critical limitations of established flow and static battery systems in energy storage. The proposed battery technology will leverage the intrinsic benefits of a redox flow battery system. It will rely on a combination of radically new thermodynamical concepts that should enable achieving an excellent balance between all key performance indicators: sustainability, cycle life, recyclability, energy and power decoupling, cost and energy density. MeBattery brings together a team of specialists who will contribute their complementary expertise in computational science, materials science, organic chemistry, environmental chemistry, chemical engineering, electrochemistry and battery prototyping.
Objective
Energy Storage Systems (ESSs) have become key elements for achieving a sustainable energy and transportation system. Among the EESs, different battery technologies hold great promises for enabling the necessary transition from fossil fuels to renewable sources. However state-of-the-art flow (All-Vanadium and Zinc – Br2) and static (Na-ion and Li-ion) battery technologies fail to satisfy all key performance indicators, e.g. sustainability, cycle life, recyclability, energy and power decoupling, cost or energy density.
The overall objective of the MeBattery project is to lay the foundations of a next generation battery technology, which will overcome critical limitations of state-of-the-art battery technologies exhibiting an excellent balance among these key performance indicators. The radically new vision of this novel battery technology relies on a combination of unconventional thermodynamically-driven concepts that will lead to a paradigm shift in energy storage. The proposed new battery technology relies on a flowing configuration system that i) possess the intrinsic benefits of flowing systems (energy conversion reactor separated from energy storage reservoir), ii) boost the energy density by storing energy in solid materials confined in the external reservoirs, and iii) guarantee the stability of the systems over long periods of time by using immiscible liquids.
Using the complementary expertise of the highly qualified partners of MeBattery consortium (including 3 ERC awardees) in computational science, materials science, organic chemistry, environmental chemistry, chemical engineering, electrochemistry and battery prototyping, the final prototype aims to demonstrate a long-life, safe and eco-friendly flow battery technology based on non-critical materials with an energy density of > 60 Wh L-1, projected lifespan of 10.000 cycles, energy efficiency of > 75 % and thermal stability up to 50 ºC.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences chemical sciences electrochemistry
- natural sciences chemical sciences inorganic chemistry transition metals
- engineering and technology environmental engineering energy and fuels energy conversion
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.3.1 - The European Innovation Council (EIC)
MAIN PROGRAMME
See all projects funded under this programme -
HORIZON.3.1.1 - The Pathfinder for Advanced Research
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-EIC - HORIZON EIC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-EIC-2021-PATHFINDEROPEN-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
09001 Burgos
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.