Project description
Probing new physics through precision Drell-Yan measurements
Despite the success of the Standard Model (SM) of particle physics, experimental evidence suggests that it is an incomplete description of the universe, serving only as a low-energy approximation of a more fundamental theory. The search for new phenomena (NP) beyond the SM is a key focus of the Large Hadron Collider (LHC). While no direct evidence of NP has been found, intriguing deviations in beauty hadron decays suggest that NP may interact differently with three generations of matter. The ERC-funded DITTO project aims to measure the high-mass Drell-Yan (HMDY) process with precision. These measurements will explore NP at energy scales beyond the LHC’s reach, providing crucial insights into the physics beyond the Standard Model.
Objective
While the Standard Model of particle physics (SM) has proven tremendously successful, experimental evidence points to it not being a complete description of our universe, but a low energy approximation of a more complete theory. The searches for new phenomena (NP) are therefore an important component of the experimental program of the Large Hadron Collider (LHC). While there is no direct evidence for NP at the LHC, measurements of beauty hadron decays display a seemingly coherent pattern of deviations with respect to the SM predictions, which suggest that NP couples differently to three generations of matter. The quark-level processes responsible for these so-called ‘flavor anomalies’ are related to dilepton production processes (Drell-Yan scattering) through the crossing symmetry. The measurements of the kinematics of the high mass Drell-Yan (HMDY) process are therefore uniquely sensitive to a wide variety of NP explanations of the ‘anomalies’.
The goal of this ground-breaking project is to provide for the first time the complete set of world’s most precise HMDY differential cross-section measurements covering not only the light lepton channels ev/μv/ee/µµ, but also extremely challenging third generation τv and ττ, ditau (DITTO), final states. These measurements will be used to probe NP at mass scales beyond the reach of direct production at the LHC through the SM effective field theory framework. The innovative performance and trigger improvements of the DITTO project will allow the ensemble of the proposed measurements to reach maximum precision, boosting the possibility for a NP discovery within the data sets expected to be collected by the ATLAS experiment at the LHC.
Just as dilepton resonances, such as the J/ψ and Y mesons and the Z and W bosons were crucial for the establishment of the SM, the study of the same final state, to be undertaken in the DITTO project, will help to pave the way for a better understanding of the physics processes beyond it.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences physical sciences theoretical physics particle physics leptons
- natural sciences physical sciences theoretical physics particle physics particle accelerator
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2022-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75794 PARIS
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.