Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

How does the X chromosome regulate DNA methylation in pluripotent stem cells?

Objective

Epigenetic processes regulate gene transcription states during cellular differentiation, playing key roles in the maintenance of pluripotency and differentiation. Epigenetic alterations are common in diseases such as in cancer and cognitive disorders. Understanding the mechanisms by which epigenetic states are inherited and propagated is of fundamental importance, and will help in the development of biomarkers for screening as well identification of targets for disease treatment.
DNA methylation remains the best-characterized epigenetic process. XX pluripotent stem cells (Embryonic Stem (ES) and induced Pluripotent Stem (iPS) cells) display genome-wide hypomethylation relative to XY stem cells but the mechanisms are unknown. This proposal will elucidate the pathways responsible. Irradiation Microcell-Mediated Chromosome Transfer (XMMCT) will be used to identify the critical region(s) of the X chromosome involved. In parallel and as an alternative approach, candidate X-linked genes will be over-expressed in XY ES cells to identify the factors responsible for global hypomethylation. Further insight will be provided using protein interaction screens using epitope-tagged versions of all active Dnmts as well as the known regulators URHF1 and Dnmt3L in XX and XY ES cells. The role of XX-induced hypomethylation in cellular reprogramming will be investigated by using different cell types from Oct4-GFP transgenic mice to examine whether iPS efficiency is affected by cells with a greater propensity to lose DNA methylation. Together these aims will elucidate the signals necessary to maintain global genomic DNA methylation. Aberrant loss is an important hallmark and contributor of disease that could be used for disease diagnosis and treatment. It could also be exploited to help improve the efficiency of cellular reprogramming for regenerative medicine.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2011-StG_20101109
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

UNIVERSITY COLLEGE LONDON
EU contribution
€ 1 497 710,00
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0