Objective
The emergence of networked embedded systems and sensor/actuator networks has facilitated the development of advanced monitoring and control applications, where a large amount of sensor data is collected and processed in real-time in order to activate the appropriate actuators and achieve the desired control objectives. However, in situations where a fault arises in some of the components (e.g. sensors, actuators, communication links), or an unexpected event occurs in the environment, this may lead to a serious degradation in performance or, even worse, to an overall system failure. There is a need to develop a systematic framework to enhance the reliability, fault-tolerance and sustainability of complex distributed dynamical systems through the use of fault-adaptive monitoring and control methods. The work proposed here will contribute to the development of such a framework with emphasis on applications related to critical infrastructure systems (e.g. power, water, telecommunications and transportation systems). It will provide an innovative approach based on the use of networked intelligent agent systems, where the state of the infrastructure is monitored and controlled by a network of sensors and actuators with cooperating agents for fault diagnosis and fault tolerant control. A hierarchical fault diagnosis architecture will be developed, with neighbouring fault diagnosis agents cooperating at a local level, while transmitting their information, as needed, to a regional monitoring agent, responsible for integrating in real-time local information into a large-scale “picture” of the health of the infrastructure. A key motivation is to exploit spatial and temporal correlations between measured variables using learning methods, and to develop the tools and design methodologies that will prevent relatively “small” faults or unexpected events from causing significant disruption or complete system failures in complex distributed dynamical systems.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences computer and information sciences artificial intelligence
- natural sciences mathematics applied mathematics dynamical systems
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
- engineering and technology electrical engineering, electronic engineering, information engineering information engineering telecommunications
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
ERC-2011-ADG_20110209
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Host institution
1678 Nicosia
Cyprus
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.