Objective
We propose to develop a new theory and design tools for the estimation and real-time control of living cells. The control systems designed using these tools will precisely and robustly steer the dynamic behavior of living cells in real time to achieve desired objectives. Cells would be controlled either collectively at the population level, or individually as single cells. The control systems achieving this regulation will be realized either on a digital computer that is interfaced with living cells, or using de novo genetic circuits that are introduced into the cells where they are designed to function as molecular control systems. Our methods will explicitly confront the numerous challenges brought about by the special environment of the cell including nonlinearity, stochasticity, cell-to-cell variability, metabolic burden, etc. The theory and methods developed in this project will thus enable the systematic, rational, and effective feedback control of living cells at the gene level, and will lay the foundation for a new corresponding body of knowledge which we call ``Cybergenetics''. It will also open new research directions in the areas of control theory and estimation.
We also propose to design three cybergenetic control systems, each addressing an important application in biotechnology or therapeutics. In the first, the controller will use light and nutrient supply to precisely regulate gene expression and cell growth in E. coli to achieve high protein and low biomass production rates. The second involves multiple feedback controllers regulating in parallel a large number of single stem cells, and leading to their differentiation to desired fates, e.g. beta cells, with potential for therapeutic applications. Finally, we will engineer into living cells dynamic molecular control systems. Such controllers can be used to monitor physiological variables and secrete biological effectors in a feedback fashion for the treatment of diseases like Type 1 diabetes.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering control systems
- natural sciences biological sciences biochemistry biomolecules proteins
- medical and health sciences clinical medicine endocrinology diabetes
- medical and health sciences medical biotechnology cells technologies stem cells
- agricultural sciences agricultural biotechnology biomass
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2016-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
8092 Zuerich
Switzerland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.