Objective
The importance of mixed-phase clouds (i.e. clouds in which liquid and ice may co-exist) for weather and climate has become increasingly evident in recent years. We now know that a majority of the precipitation reaching Earth’s surface originates from mixed-phase clouds, and the way cloud phase changes under global warming has emerged as a critically important climate feedback. Atmospheric aerosols may also have affected climate via mixed-phase clouds, but the magnitude and even sign of this effect is currently unknown. Satellite observations have recently revealed that cloud phase is misrepresented in global climate models (GCMs), suggesting systematic GCM biases in precipitation formation and cloud-climate feedbacks. Such biases give us reason to doubt GCM projections of the climate response to CO2 increases, or to changing atmospheric aerosol loadings. This proposal seeks to address the above issues, through a multi-angle and multi-tool approach: (i) By conducting field measurements of cloud phase at mid- and high latitudes, we seek to identify the small-scale structure of mixed-phase clouds. (ii) Large-eddy simulations will then be employed to identify the underlying physics responsible for the observed structures, and the field measurements will provide case studies for regional cloud-resolving modelling in order to test and revise state-of-the-art cloud microphysics parameterizations. (iii) GCMs, with revised microphysics parameterizations, will be confronted with cloud phase constraints available from space. (iv) Finally, the same GCMs will be used to re-evaluate the climate impact of mixed-phase clouds in terms of their contribution to climate forcings and feedbacks. Through this synergistic combination of tools for a multi-scale study of mixed-phase clouds, the proposed research has the potential to bring the field of climate science forward, from improved process-level understanding at small scales, to better climate change predictions on the global scale.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2017-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
0313 Oslo
Norway
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.