Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Deep-Learning and HPC to Boost Biomedical Applications for Health

Project description

Supercomputing and Big Data for biomedical applications

The so-called fourth paradigm of science is based on the unified environments of high-performance computing (HPC) and Big Data analytics. It is expected to considerably advance health scientific research and innovation. The EU-funded DeepHealth project will deliver HPC power at the service of biomedical applications and apply deep learning (DL) techniques on vast and compound biomedical data sets, aiming to underpin new and more effective methods of diagnosis, monitoring and treatment of diseases. The project will develop a resilient and scalable structure for the HPC + Big Data environment that will rely on two new libraries: the European Distributed Deep Learning Library (EDDLL) and the European Computer Vision Library (ECVL). The structure, after it is validated, will allow training of models and provide training data from different medical fields.

Objective

Health scientific discovery and innovation are expected to quickly move forward under the so called “fourth paradigm of science”, which relies on unifying the traditionally separated and heterogeneous high-performance computing and big data analytics environments.
Under this paradigm, the DeepHealth project will provide HPC computing power at the service of biomedical applications; and apply Deep Learning (DL) techniques on large and complex biomedical datasets to support new and more efficient ways of diagnosis, monitoring and treatment of diseases.
DeepHealth will develop a flexible and scalable framework for the HPC + Big Data environment, based on two new libraries: the European Distributed Deep Learning Library (EDDLL) and the European Computer Vision Library (ECVL). The framework will be validated in 14 use cases which will allow to train models and provide training data from different medical areas (migraine, dementia, depression, etc.). The resulting trained models, and the libraries, will be integrated and validated in 7 existing biomedical software platforms, which include: a) commercial platforms (e.g. PHILIPS Clinical Decision Support System from or THALES SIX PIAF; and b) research oriented platforms (e.g. CEA`s ExpressIF™ or CRS4`s Digital Pathology). Impact is measured by tracking the time-to-model-in-production (ttmip).
Through this approach, DeepHealth will also standardise HPC resources to the needs of DL applications, and underpin the compatibility and uniformity on the set of tools used by medical staff and expert users. The final DeepHealth solution will be compatible with HPC infrastructures ranging from the ones in supercomputing centers to the ones in hospitals.
DeepHealth involves 21 partners from 9 European Countries, gathering a multidisciplinary group from research organisations (9), health organisations (4) as well as (4) large and (4) SME industrial partners, with strong commitment towards innovation, exploitation and sustainability.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

IA - Innovation action

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-ICT-2018-20

See all projects funded under this call

Coordinator

NTT DATA SPAIN, SL
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 314 980,14
Address
CAMINO FUENTE DE LA MORA 1
28050 Madrid
Spain

See on map

Region
Comunidad de Madrid Comunidad de Madrid Madrid
Activity type
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 059 567,48

Participants (24)

My booklet 0 0