Project description
Machine learning to increase knowledge on aerosol-cloud impacts
The Paris Climate Agreement represents a huge step towards addressing the climate change problem. However, a wide range of difficulties emerge in its implementation. A major obstacle is the lack of scientific evidence on non-greenhouse gas forcing impacted by aerosol-cloud interactions. Even though big data science has been used to further understand aerosol-cloud climate interactions, artificial intelligence (AI) and machine learning are not yet fully applied in climate science, and scientists are not trained adequately. The EU-funded iMIRACLI project proposes the merging of AI, machine learning and climate science to investigate existing data and increase our knowledge on aerosol-cloud impacts. The project will train early stage researchers to produce a new generation of climate data experts.
Objective
Climate change is one of the most urgent problems facing mankind. Implementation of the Paris climate agreement relies on robust scientific evidence. Yet, the uncertainty of non-greenhouse gas forcing associated with aerosol-cloud interactions limits our constraints on climate sensitivity. Radically new ideas are required. While the majority of forcing estimates are model based, model uncertainties remain too large to achieve the required uncertainty reductions. The quantification of aerosol cloud climate interactions in Earth Observations is thus one of the major challenges of climate science. Progress has been hampered by the difficulty to disentangle aerosol effects on clouds and climate from their covariability with confounding factors, limitations in remote sensing, very low signal-to-noise ratios as well as computationally, due to the scale of the big (>100Tb) datasets and their heterogeneity. Such big data challenges are not unique to climate science but occur across a wide range of data science applications. Innovative techniques developed by the AI and machine learning community show huge potential but have not yet found their way into climate sciences – and climate scientists are currently not trained to capitalise on these advances. The central hypothesis of IMIRACLI is that merging machine learning and climate science will provide a breakthrough in the exploration of existing datasets, and hence advance our understanding of aerosol-cloud forcing and climate sensitivity. Its innovative training plan will match each ESR with supervisors from climate and data sciences as well as a non-academic advisor and secondment and provide them with state-of-the-art data and climate science training. Partners from the non-academic sector will be closely involved in each of the projects and provide training in a commercial context. This ETN will produce a new generation of climate data scientists, ideally trained for employment in the academic and commercial sectors.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences earth and related environmental sciences atmospheric sciences climatology
- social sciences economics and business business and management employment
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.1. - Fostering new skills by means of excellent initial training of researchers
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-ITN - Marie Skłodowska-Curie Innovative Training Networks (ITN)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-ITN-2019
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
OX1 2JD Oxford
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.