Descrizione del progetto
Apprendimento automatico per aumentare le conoscenze sugli impatti fra nuvole e aerosol
L’accordo di Parigi sul clima rappresenta un enorme passo avanti verso la risoluzione del problema dei cambiamenti climatici, ma nella sua attuazione emerge una vasta gamma di difficoltà. Uno dei principali ostacoli è la mancanza di prove scientifiche sulla forzatura dei gas non serra, influenzata dalle interazioni tra aerosol atmosferico e nuvole. Anche se per comprendere meglio le interazioni climatiche fra aerosol e nuvole è stata utilizzata la scienza dei megadati, l’intelligenza artificiale (IA) e l’apprendimento automatico non sono ancora pienamente applicati nella climatologia, e gli scienziati non dispongono dell’adeguata formazione. Il progetto iMIRACLI, finanziato dall’UE, propone la fusione di IA, apprendimento automatico e climatologia per studiare i dati esistenti e aumentare le nostre conoscenze sugli impatti fra nuvole e aerosol. Il progetto formerà ricercatori in fase iniziale per produrre una nuova generazione di esperti di dati climatici.
Obiettivo
Climate change is one of the most urgent problems facing mankind. Implementation of the Paris climate agreement relies on robust scientific evidence. Yet, the uncertainty of non-greenhouse gas forcing associated with aerosol-cloud interactions limits our constraints on climate sensitivity. Radically new ideas are required. While the majority of forcing estimates are model based, model uncertainties remain too large to achieve the required uncertainty reductions. The quantification of aerosol cloud climate interactions in Earth Observations is thus one of the major challenges of climate science. Progress has been hampered by the difficulty to disentangle aerosol effects on clouds and climate from their covariability with confounding factors, limitations in remote sensing, very low signal-to-noise ratios as well as computationally, due to the scale of the big (>100Tb) datasets and their heterogeneity. Such big data challenges are not unique to climate science but occur across a wide range of data science applications. Innovative techniques developed by the AI and machine learning community show huge potential but have not yet found their way into climate sciences – and climate scientists are currently not trained to capitalise on these advances. The central hypothesis of IMIRACLI is that merging machine learning and climate science will provide a breakthrough in the exploration of existing datasets, and hence advance our understanding of aerosol-cloud forcing and climate sensitivity. Its innovative training plan will match each ESR with supervisors from climate and data sciences as well as a non-academic advisor and secondment and provide them with state-of-the-art data and climate science training. Partners from the non-academic sector will be closely involved in each of the projects and provide training in a commercial context. This ETN will produce a new generation of climate data scientists, ideally trained for employment in the academic and commercial sectors.
Campo scientifico (EuroSciVoc)
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
- scienze naturali scienze della terra e scienze ambientali connesse scienze dell'atmosfera climatologia
- scienze sociali economia e commercio economia e gestione aziendale occupazione
È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione
Siamo spiacenti… si è verificato un errore inatteso durante l’esecuzione.
È necessario essere autenticati. La sessione potrebbe essere scaduta.
Grazie per il tuo feedback. Riceverai presto un'e-mail di conferma dell'invio. Se hai scelto di ricevere una notifica sullo stato della segnalazione, sarai contattato anche quando lo stato della segnalazione cambierà.
Parole chiave
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Programma(i)
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
PROGRAMMA PRINCIPALE
Vedi tutti i progetti finanziati nell’ambito di questo programma -
H2020-EU.1.3.1. - Fostering new skills by means of excellent initial training of researchers
Vedi tutti i progetti finanziati nell’ambito di questo programma
Argomento(i)
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Meccanismo di finanziamento
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
MSCA-ITN - Marie Skłodowska-Curie Innovative Training Networks (ITN)
Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento
Invito a presentare proposte
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
(si apre in una nuova finestra) H2020-MSCA-ITN-2019
Vedi tutti i progetti finanziati nell’ambito del bandoCoordinatore
Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.
OX1 2JD Oxford
Regno Unito
I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.