Project description
Improved kinetic models for real-world applications
Kinetic models drive forward our understanding of the macroscopic properties of particles in a wide range of scientific and engineering applications. Real-world applications require highly accurate kinetic models that span a wide range of length and temporal scales. The EU-funded FASTKiT project plans to develop numerical methods that are fully adaptive in both space and time to challenging multiscale kinetic models and design software to compute solutions. Improved kinetic models generated by FASTKiT will set the stage for the development of next-generation reactors and space exploration technologies.
Objective
Kinetic models are omnipresent in a wide range of scientific and engineering applications. They are derived from the evolution of a particle distribution in position-velocity phase space, and appear, for instance, in the modeling of fusion energy reactors and atmospheric reentry of spacecraft, where classical fluid equations are inaccurate. Further technological progress of these applications requires significant advances in modeling and simulation of kinetic models. The underlying kinetic equations pose severe simulation challenges, due to their inherent high-dimensionality and the presence of a wide range of time scales.
The increased dimensionality in velocity directions can be addressed by an extended set of fluid quantities via moment models or the maximum entropy method. To deal with the stiffness of the equations, asymptotic-preserving time discretization methods need to be used. Since both the stiffness and the accuracy of a kinetic model depend on space and time, the design of numerical methods incorporating fully integrated space-time adaptivity is crucial to allow these methods to be efficiently used in real-world applications.
In this action, the applicant will integrate his expertise on moment models with the experience on projective integration schemes available at the host institution, and extend their applicability towards a wide range of kinetic models hereby achieving the following objectives:
- Develop fully space-time adaptive numerical scheme for kinetic models
- Implement software for space-time adaptive solution of kinetic models
- Compute numerical solutions for real-world applications
The results of FASTKiT will constitute a major step forward in the adaptive simulation of kinetic models. FASTKiT will contribute to the development of technologies for next generation reactors and space exploration efforts, in line with Horizon 2020, while the applicant will benefit from an innovative environment to receive training and transferable skills.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences astronomy space exploration
- engineering and technology mechanical engineering vehicle engineering aerospace engineering astronautical engineering spacecraft
- natural sciences mathematics applied mathematics numerical analysis
- natural sciences computer and information sciences software software applications simulation software
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2019
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
3000 Leuven
Belgium
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.