European Commission logo
English English
CORDIS - EU research results

Article Category

Content archived on 2023-03-02

Article available in the following languages:


Slovenian synthetic biologists win competition at MIT

Team of undergraduate students of the University of Ljubljana, led by their mentors from the National institute of chemistry and University, scooped the Grand Prize from the international Genetically Engineered Machines Competition held each year at MIT, Cambridge, USA. Their research project aimed at preparing a hi-tech vaccine against Helicobacter.

Almost half of the world population is infected with this bacteria, which colonizes stomach, causing gastritis and ulcers and is recognized by WHO as a type I carcinogen. Current antibacterial treatment, implemented after the seminal discovery that bacterial infection is the underlying cause of ulcers, which brought the discoverers the Nobel Prize in 2005, requires combination of at least three different drugs to eliminate bacteria. However it does not prevent reinfection, which often occurs within the family. Additionally bacterial resistance decreases the efficiency of therapy. Effective vaccine against Helicobacter pylori is not available, although it could be a durable solution, particularly in a formulation affordable to the third world population. The Slovenian students’ team managed to demonstrate that this type of modification makes flagellin of Helicobacter visible to the immune system. To increase the efficiency of immune response they added several segments of most important virulence factors of Helicobacter pylori to a synthetic vaccine. They prepared three different implementations of vaccine, including isolated proteins, DNA vaccine and modified bacteria that present polypeptides of Helicobacter at their surface. “We think that bacteria might be easiest to implement as the vaccine in remote areas, since you could just reconstitute lyophilized bacteria or bacterial ghosts if the oral or mucosal vaccination shows the adequate efficiency”, is optimistic Jerneja Mori, fourth grade student of microbiology at the Biotechnical faculty. Project was accomplished in five months from the idea to the demonstration of the proof of concept and was prepared as an entry to the MIT competition. This year 85 teams from 21 countries including world`s best universities competed with their projects in synthetic biology. Six finalists (Slovenia, Harvard, Caltech, Freiburg, UC Berkeley and NYMU Taipei) presented their project to all participants and judges, coming from academia, biotech, pharmaceutical and science publishing companies. The Slovenian project was selected as the best in Health and Medicine and they won the Grand Prize award in overall ranking. Team leader prof. Roman Jerala, head of the Department of Biotechnology at the National institute of Chemistry explains: “I had some doubts whether it will be possible to demonstrate the proof of principle within such short time. Nevertheless students were extremely motivated and we were able to demonstrate activation of immune receptors and response in vivo against the proteins of Helicobacter pylori”. “Before we can state that vaccine is truly effective, we have to do much more work but current results are quite encouraging”, is optimistic mentor prof. Simon Horvat from the Biotechnical Faculty of the University of Ljubljana. In addition to modified flagellin Slovenian team proposed another approach which involved modifications of the signaling network of innate immune receptors. The power of this approach is that we can mimic synergistic activation of several TLRs by pathogenic microbes, while having the advantage of safety of a defined subunit vaccine. They have already filed two patent applications and are determined to continue to complete all the tests of the therapeutic efficiency of vaccine. “The ultimate goal would be to prepare a vaccine to eradicate Helicobacter pylori”, says Jan Lonzari, student of biochemistry, who successfully presented the project at the competition.