Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Article Category

Contenu archivé le 2023-03-23

Article available in the following languages:

EN

New EU research project is developing open-source software for exascale-class supercomputers

A billion billion, i.e. 10^18 computer operations per second (1 exaflop/s) is the level of performance that the next generation of supercomputers should be able to deliver. However, programming such supercomputers is a challenge. In October 2015, the EC began funding "ExaHyPE", an international project coordinated at the Technische Universität München (TUM), which seeks to establish the algorithmic foundations for exascale supercomputers in the next four years. The grant totals EUR 2.8 million.

The aim is to develop novel software, initially for simulations in geophysics and astrophysics, which will be published as open-source software for further use. Computer-based simulations drive progress in the field of science. In addition to theory and experiments, simulations have long since been crucial for acquiring knowledge and insight. Supercomputers allow for the computation of increasingly complex and precise models. The EU ExaHyPE („An Exascale Hyperbolic PDE Engine“) project has an interdisciplinary team of researchers from seven institutions in Germany, Italy, the United Kingdom, and Russia, and integrates well into Europe's strategy for developing an exascale-class supercomputer by 2020. In order to be able to leverage the incredible processing power of exascale systems for correspondingly comprehensive simulation tasks, the entire supercomputing infrastructure, including the software, must be prepared for such systems. Powerful, flexible and energy-efficient Supercomputing of the future poses immense challenges for the ExaHyPE researchers. Currently, the biggest obstacle for achieving exascale computing is energy consumption. Today, the world's fastest supercomputers – Tianhe-2 (China), Titan (US), Sequoia (US) and the K Computer (Japan) – operate in the petaflop/s range (10^15 computer operations per second) and require between 8 and 18 megawatts (source: www.top500.org) with the energy costs amounting to about US$ 1 million per megawatt and year. "Based on current technologies, an exascale computer with a demand of close to 70 megawatts would represent both a financial and an infrastructural challenge," explains ExaHyPE coordinator Professor Michael Bader of TUM. "That is why simulation software developed as part of the ExaHyPE project will be consistently designed for the requirements of future energy-efficient hardware." On the hardware side, an extreme parallelization is to be expected. "By 2020 supercomputers will encompass hundreds of millions processor cores," Bader adds. "At the same time, the hardware – which is pushed to its physical limits to achieve the further increase in performance and still must run as energy efficiently as possible – will increasingly tend to be plagued with interruptions and fluctuating performance curves. ExaHyPE will consequently examine the dynamic distribution of computer operations to processor cores – even if these fail while performing calculations." Another objective is to reduce the internal-hardware communication simultaneously with the parallelization. Each data transfer is implemented at the expense of energy consumption. In ten years, supercomputers will be able to run calculations 1000 times faster than today. However, memory access time will fail to evolve at the same rate. The used algorithms should be inherently memory-efficient and require as little data transfer as possible to ensure fast, energy-efficient computer operations. In order to take full advantage of the smallest possible amount of memory, the consortium is developing new scalable algorithms, which dynamically increase the resolution of simulations, i.e. the implemented numerical observation points, wherever the computer simulation needs – and only there. As a result, scientists will be able to limit the necessary computer operations to a minimum while simultaneously achieving the greatest possible accuracy for the simulation. Two application scenarios: Earthquakes and gamma ray explosions The ExaHyPE researchers will prepare the new algorithms based on two application scenarios taken from geophysics (earthquakes) and astrophysics (gamma ray explosions). In spite of the two precisely defined areas of application, the researchers want to keep the new algorithms as general as possible so that they may also be used in other disciplines after making corresponding adaptations. To guarantee a rapid dissemination of the new technology, the consortium will release it as open source software.

Pays

Germany, Italy, Russia, United Kingdom

Mon livret 0 0