Skip to main content
European Commission logo print header

Article Category

News
Content archived on 2023-03-23

Article available in the following languages:

EN

Reconstructed ancient ocean reveals secrets about the origin of life

Researchers from the University of Cambridge have published details about how the first organisms on Earth could have become metabolically active.

HEIDELBERG, 25 April 2014 – Researchers from the University of Cambridge have published details about how the first organisms on Earth could have become metabolically active. The results, which are reported in the journal Molecular Systems Biology, permit scientists to speculate how primitive cells learned to synthesize their organic components – the molecules that form RNA, lipids and amino acids. The findings also suggest an order for the sequence of events that led to the origin of life. A reconstruction of Earth's earliest ocean in the laboratory revealed the spontaneous occurrence of the chemical reactions used by modern cells to synthesize many of the crucial organic molecules of metabolism. Previously, it was assumed that these reactions were carried out in modern cells by metabolic enzymes, highly complex molecular machines that came into existence during the evolution of modern organisms. Almost 4 billion years ago life on Earth began in iron-rich oceans that dominated the surface of the planet. An open question for scientists is when and how cellular metabolism, the network of chemical reactions necessary to produce nucleic acids, amino acids and lipids, the building blocks of life, appeared on the scene. The observed chemical reactions occurred in the absence of enzymes but were made possible by the chemical molecules found in the Archean sea. Finding a series of reactions that resembles the 'core of cellular metabolism' suggests that metabolism predates the origin of life. This implies that, at least initially, metabolism may not have been shaped by evolution but by molecules like RNA formed through the chemical conditions that prevailed in the earliest oceans. 'Our results demonstrate that the conditions and molecules found in the Earth’s ancient oceans assisted and accelerated the interconversion of metabolites that in modern organisms make up glycolysis and the pentose-phosphate pathways, two of the essential and most centrally placed reaction cascades of metabolism,' says Dr. Markus Ralser, Group Leader at the Department of Biochemistry at the University of Cambridge and the National Institute for Medical Research. 'In our reconstructed version of the ancient Archean ocean, these metabolic reactions were particularly sensitive to the presence of ferrous iron that helped catalyze many of the chemical reactions that we observed.' From the analysis of early oceanic sediments, geoscientists such as Alexandra V. Turchyn from the Department of Earth Sciences at the University of Cambridge, one of the co-authors of the study, concluded that soluble forms of iron were one of the most frequently found molecules in the prebiotic oceans. The scientists reconstructed the conditions of this prebiotic sea based on the composition of various early sediments described in the scientific literature. The different metabolites were incubated at high temperatures (50-90oC) similar to what might be expected close to a hydrothermal vent of an oceanic volcano, a temperature that would not support the activity of conventional protein enzymes. The chemical products were separated and analyzed by liquid chromatography tandem mass spectrometry. Some of the observed reactions could also take place in water but were accelerated by the presence of metals that served as catalysts. 'In the presence of iron and other compounds found in the oceanic sediments, 29 metabolic-like chemical reactions were observed, including those that produce some of the essential chemicals of metabolism, for example precursors of the building blocks of proteins or RNA,' says Ralser. 'These results indicate that the basic architecture of the modern metabolic network could have originated from the chemical and physical constraints that existed on the prebiotic Earth.' The detection of one of the metabolites, ribose 5-phosphate, in the reaction mixtures is particularly noteworthy. Its availability means that RNA precursors could in theory give rise to RNA molecules that encode information, catalyze chemical reactions and replicate. Whether and how the first enzymes adopted the metal-catalyzed reactions described by the scientists remain to be established. Non-enzymatic glycolysis and pentose phosphate pathway-like reactions in a plausible Archean ocean Markus A. Keller, Alexandra V. Turchyn, Markus Ralser Read the paper: doi: 10.1002/msb.145228 http://msb.embopress.org/cgi/doi/10.1002/msb.20145228 Read the News and Views article by Pier Luigi Luisi: doi: 10.1002/msb.145351 http://msb.embopress.org/cgi/doi/10.1002/msb.20145351 Further information on Molecular Systems Biology is available at http://msb.embopress.org Media Contacts Barry Whyte Head | Public Relations and Communications barry.whyte@embo.org Thomas Lemberger Chief Editor, Molecular Systems Biology Tel: +49 6221 8891 413 thomas.lemberger@embo.org About EMBO EMBO is an organization of more than 1500 leading researchers that promotes excellence in the life sciences. The major goals of the organization are to support talented researchers at all stages of their careers, stimulate the exchange of scientific information, and help build a European research environment where scientists can achieve their best work. EMBO helps young scientists to advance their research, promote their international reputations and ensure their mobility. Courses, workshops, conferences and scientific journals disseminate the latest research and offer training in techniques to maintain high standards of excellence in research practice. EMBO helps to shape science and research policy by seeking input and feedback from our community and by following closely the trends in science in Europe. For more information: www.embo.org 


Countries

Austria, Belgium, Bulgaria, Cyprus, Czechia, Germany, Denmark, Estonia, Greece, Spain, Finland, France, Hungary, Ireland, Italy, Lithuania, Luxembourg, Latvia, Malta, Netherlands, Poland, Portugal, Romania, Sweden, Slovenia, United Kingdom