European Commission logo
English English
CORDIS - EU research results

Article Category

Results Pack

Article available in the following languages:

Waste Heat Valorisation: Improving energy efficiency in process industries

Clean technologies developed by Horizon 2020-funded projects for reducing the impact of energy intensive industrial processes are helping Europe to transform into a sustainable, competitive economy and address environmental and climate-related challenges. This Results Pack highlights nine cutting-edge EU projects that are supporting this transition.

Climate Change and Environment icon Climate Change and Environment
Industrial Technologies icon Industrial Technologies
Energy icon Energy

Energy represents up to 20 % of the total production costs for energy intensive industries in Europe, and even more for some industrial sectors. However, despite considerable technical progress in reducing energy consumption, a significant amount of the input energy is still lost in the form of waste heat. Excess heat from certain processes can be a valuable resource for other processes within the industry and even for other industries or users, directly or after intermediate transformation steps. Industrial waste heat recovery potential is still untapped due to a number of technical and non-technical barriers. Among them, the need for efficient and cost-effective technologies to recover heat losses and to re-use, upgrade or transform this heat for its valorisation. Improved energy efficiency in industrial processes can lead to substantial primary energy savings, decarbonisation of the energy supply and subsequent reduction of CO2 emissions. The reduction in energy cost will also enable greater competitiveness.

A more sustainable future

The projects presented below have developed and demonstrated innovative methods, solutions, technologies and operational practices to improve energy efficiency in industry, with a focus on the recovery and valorisation of waste heat from industrial processes. These include heat recovery and storage, heat upgrading and heat to power conversion in different sectors. Many of the potential solutions for recovering unused heat are adaptable to various types of processes and can be replicated across several industrial sectors. These initiatives support The European Strategic Energy Technology Plan (SET Plan), a key stepping-stone towards a climate neutral energy system through the development of low-carbon technologies, as well as the SPIRE public-private partnership roadmap and its follow-up Processes4Planet Partnership research agenda.

EU research highlighted

In this CORDIS Results Pack we focus on the innovative results developed by Horizon 2020-funded projects working to re-use waste heat from process industry. For example, TASIO created a new generation of direct heat exchange technology for commercial heat-to-power ORC systems in the cement, glass, steelmaking and petrochemical industries. SUSPIRE developed novel highly efficient heat exchangers and thermal energy storage technology for reuse or commercialisation of waste heat, while VULKANO focused on thermal energy storage technology based on phase change materials that can recover and store high-temperature heat. I-ThERM designed innovative plug-and-play heat recovery and conversion to power solutions with potential across a wide temperature spectrum, including the novel supercritical CO2 cycle. In some processes however, waste energy is of low quality and it is not practical or economical to recover it with current technologies. Indus3Es developed an innovative Absorption Heat Transformer that focused on low temperature heat recovery, and LOWUP demonstrated innovative heat pump technology that captures and upgrades heat energy. DREAM pioneered the design of heat pipe heat exchangers to recapture the energy lost from kilns and transfer it to another point in the production chain. In a similar vein, ETEKINA designed novel heat pipe heat exchanger technology for recovery and management of heat from exhaust streams. Finally, DryFiciency developed and successfully demonstrated two different industrial heat pump technologies that recover and reuse waste heat in industrial drying processes.