Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Refined invariants in combinatorics, low-dimensional topology and geometry of moduli spaces

Project description

Solving conjectures that relate invariants in diverse mathematical areas

Certain invariants appearing in low-dimensional topology and algebraic geometry admit a so-called refinement. Where classical invariants produce polynomials in one variable (q), and often have expressions involving Schur polynomials, refined invariants produce polynomials in two variables (q and t) and often have expressions involving Macdonald polynomials. The EU-funded REFINV project plans to develop a comprehensive theory to solve several long-standing conjectures that relate invariants in algebraic geometry, combinatorics and low-dimensional topology. To this end, researchers will build on methods developed in previous work regarding shuffle conjecture solutions, homology computations of torus knots and Poincare polynomials of character varieties, and the proof of the curious hard Lefschetz conjecture.

Objective

Some invariants appearing in low-dimensional topology and algebraic geometry admit a so-called refinement: a much stronger, but more complicated invariant. For instance, in low-dimensional topology we study the Poincare polynomial of the triply-graded Khovanov-Rozansky homology of a knot, which is a refined version of the HOMFLY-PT polynomial. The usual Poincare polynomial and the E-polynomial of a character variety are refined by the full mixed Hodge polynomial. On the cohomology of a moduli space of Higgs bundles, we need an extra filtration, the so-called perverse filtration, to define the refinement. Where classical invariants produce polynomials in one variable q, and often have expressions involving Schur polynomials, refined invariants produce polynomials in two variables q and t, and often have expressions involving Macdonald polynomials. The connection conjectures and the P=W conjecture relate refined invariants appearing in the three contexts above.

We propose to develop a comprehensive theory connecting these notions, and as main applications, to solve the P=W conjecture for character varieties, the Gorsky-Negut-Rasmussen conjectures relating knot invariants and sheaves on the Hilbert scheme, Cherednik's conjectures computing homologies of algebraic links via DAHA, the Hausel-Letellier-Rodriguez-Villegas conjectures computing mixed Hodge polynomials of character varieties, nabla positivity, and the Stanley-Stembridge positivity conjectures.

To achieve our goal, we will build on methods developed in our previous work on the solution of the shuffle conjectures, the computations of homology of torus knots and Poincare polynomials of character varieties, and the proof of the curious hard Lefschetz conjecture. These methods include combinatorics of Dyck paths, symmetric functions and Macdonald theory, the A(q,t) algebra, cell decompositions of character varieties, natural actions on cohomology and K-theory, counting geometric objects over finite fields.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-COG - Consolidator Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2020-COG

See all projects funded under this call

Host institution

UNIVERSITAT WIEN
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 996 023,00
Address
UNIVERSITATSRING 1
1010 Wien
Austria

See on map

Region
Ostösterreich Wien Wien
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 996 023,00

Beneficiaries (1)

My booklet 0 0