Descripción del proyecto
La evolución de las simbiosis intracelulares en plantas no vasculares
A pesar de su papel esencial en los ecosistemas terrestres, los mecanismos moleculares que subyacen al origen y posterior evolución de las simbiosis intracelulares en las plantas son poco conocidos. En el proyecto ORIGINS, financiado con fondos europeos, se empleará la técnica CRISPR/Cas9 en el briófito «Marchantia paleacea» para estudiar los mecanismos simbióticos en plantas no vasculares y, a continuación, dilucidar cómo evolucionaron estos mecanismos al comparar plantas terrestres con sus parientes algales más cercanos. El equipo de ORIGINS también llevará a cabo análisis transcriptómicos, así como manipulaciones genéticas de las simbiosis intracelulares más conocidas en plantas. El objetivo es comprender cómo los simbiontes microbianos intracelulares han evolucionado varias veces en plantas terrestres y cómo evolucionó la especificidad funcional en estas diferentes simbiosis. Por último, en ORIGINS se investigará por qué la evolución de las simbiosis intracelulares está limitada a una ruta genética.
Objetivo
Mutualism between plants and microorganisms has been essential for the evolution of terrestrial ecosystems for millions of years. It has been proposed that even the colonization of lands by plants was facilitated by a mutualistic symbiosis formed with arbuscular mycorrhizal fungi. This symbiosis, by far the most widespread in land plants, results in the accommodation of the symbiotic fungus inside the plant cells. Following this initial symbiosis, multiple other intracellular symbioses have evolved in plants as diverse as orchids, Ericaceae such as cranberry, legumes or the Jungermanniales, a group of bryophytes. These symbioses provide numerous benefits, improving plant nutrient acquisition and fitness. Despite their absolute importance in terrestrial ecosystems, the molecular mechanisms underlying the origin and subsequent evolution of intracellular symbioses in plants remain poorly understood.
In a first objective, we will use CRISPR/Cas9 in the bryophyte Marchantia paleacea to test the conservation across land plants of symbiotic mechanisms known in angiosperms. Then, we will decipher how these mechanisms evolved by comparing land plants with their closest algal relatives. In a second objective, we will conduct transcriptomics coupled with genetic manipulations of most known intracellular symbioses in plants. This will allow determining how the ability to host intracellularly microbial symbionts recruited in the environment evolved repeatedly in land plants and how functional specificity evolved in these different symbioses. Lastly, we will investigate why the evolution of intracellular symbioses is constrained to a unique genetic pathway.
Through this project, combining phylogenomics, biochemistry, transcriptomics and genetic validations in six plant lineages covering more than 500 million years of evolution, we will provide a comprehensive understanding of the molecular mechanisms underlying the evolution of intracellular mutualistic symbioses in plants.
Ámbito científico
- natural sciencesbiological sciencesbiochemistry
- medical and health sciencesmedical biotechnologygenetic engineering
- natural sciencesbiological sciencesmicrobiologymycology
- natural sciencesbiological sciencesecologyecosystems
- natural sciencesbiological sciencesbiological behavioural sciencesethologybiological interactions
Programa(s)
Régimen de financiación
ERC-COG - Consolidator GrantInstitución de acogida
75794 Paris
Francia