Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Fully Integrating Atomistic Modeling with Machine Learning

CORDIS provides links to public deliverables and publications of HORIZON projects.

Links to deliverables and publications from FP7 projects, as well as links to some specific result types such as dataset and software, are dynamically retrieved from OpenAIRE .

Publications

Fast evaluation of spherical harmonics with sphericart (opens in new window)

Author(s): F. Bigi, G. Fraux, N. J. Browning, and M. Ceriotti
Published in: Journal of Chemical Physics, Issue 159, 2023, Page(s) 064802, ISSN 0021-9606
Publisher: American Institute of Physics
DOI: 10.1063/5.0156307

A prediction rigidity formalism for low-cost uncertainties in trained neural networks (opens in new window)

Author(s): Filippo Bigi, Sanggyu Chong, Michele Ceriotti, Federico Grasselli
Published in: Machine Learning: Science and Technology, Issue 5, 2024, Page(s) 045018, ISSN 2632-2153
Publisher: IOP
DOI: 10.1088/2632-2153/ad805f

Physics-Inspired Equivariant Descriptors of Nonbonded Interactions (opens in new window)

Author(s): Kevin K. Huguenin-Dumittan, Philip Loche, Ni Haoran, Michele Ceriotti
Published in: The Journal of Physical Chemistry Letters, Issue 14, 2023, Page(s) 9612-9618, ISSN 1948-7185
Publisher: American Chemical Society
DOI: 10.1021/acs.jpclett.3c02375

Completeness of atomic structure representations (opens in new window)

Author(s): Jigyasa Nigam, Sergey N. Pozdnyakov, Kevin K. Huguenin-Dumittan, Michele Ceriotti
Published in: APL Machine Learning, Issue 2, 2024, ISSN 2770-9019
Publisher: AIP Publishing LLC
DOI: 10.1063/5.0160740

Mechanism of Charge Transport in Lithium Thiophosphate (opens in new window)

Author(s): Lorenzo Gigli, Davide Tisi, Federico Grasselli, Michele Ceriotti
Published in: Chemistry of Materials, Issue 36, 2024, Page(s) 1482-1496, ISSN 0897-4756
Publisher: American Chemical Society
DOI: 10.1021/acs.chemmater.3c02726

Unified theory of atom-centered representations and message-passing machine-learning schemes. (opens in new window)

Author(s): Jigyasa Nigam; Sergey Pozdnyakov; Guillaume Fraux; Michele Ceriotti
Published in: Journal of Chemical Physics, 2022, ISSN 0021-9606
Publisher: American Institute of Physics
DOI: 10.48550/arxiv.2202.01566

Predicting hot-electron free energies from ground-state data (opens in new window)

Author(s): Chiheb Ben Mahmoud, F. Grasselli, and M. Ceriotti
Published in: Physical Review B, 2022, ISSN 2469-9950
Publisher: American Physical Society
DOI: 10.1103/physrevb.106.l121116

Equivariant representations for molecular Hamiltonians and N-center atomic-scale properties (opens in new window)

Author(s): Jigyasa Nigam; Michael J. Willatt; Michele Ceriotti
Published in: Chemical Physics, Issue 1, 2022, Page(s) 156(1), 014115 (2022), ISSN 0021-9606
Publisher: American Institute of Physics
DOI: 10.1063/5.0072784

Probing the effects of broken symmetries in machine learning (opens in new window)

Author(s): Marcel F Langer, Sergey N Pozdnyakov, Michele Ceriotti
Published in: Machine Learning: Science and Technology, Issue 5, 2024, Page(s) 04LT01, ISSN 2632-2153
Publisher: IOP
DOI: 10.1088/2632-2153/ad86a0

Robustness of Local Predictions in Atomistic Machine Learning Models (opens in new window)

Author(s): Sanggyu Chong, Federico Grasselli, Chiheb Ben Mahmoud, Joe D. Morrow, Volker L. Deringer, Michele Ceriotti
Published in: Journal of Chemical Theory and Computation, Issue 19, 2023, Page(s) 8020-8031, ISSN 1549-9618
Publisher: American Chemical Society
DOI: 10.1021/acs.jctc.3c00704

Local invertibility and sensitivity of atomic structure-feature mappings (opens in new window)

Author(s): Sergey Pozdnyakov; Liwei Zhang; Christoph Ortner; Gábor Csányi; Michele Ceriotti
Published in: Open Research Europe, Issue 1, 2021, ISSN 2732-5121
Publisher: Excellent Science
DOI: 10.12688/openreseurope.14156.1

Electronic Excited States from Physically Constrained Machine Learning (opens in new window)

Author(s): Edoardo Cignoni, Divya Suman, Jigyasa Nigam, Lorenzo Cupellini, Benedetta Mennucci, Michele Ceriotti
Published in: ACS Central Science, Issue 10, 2024, Page(s) 637-648, ISSN 2374-7943
Publisher: American Chemical Society
DOI: 10.1021/acscentsci.3c01480

scikit-matter : A Suite of Generalisable Machine Learning Methods Born out of Chemistry and Materials Science (opens in new window)

Author(s): Alexander Goscinski, Victor Paul Principe, Guillaume Fraux, Sergei Kliavinek, Benjamin Aaron Helfrecht, Philip Loche, Michele Ceriotti, Rose Kathleen Cersonsky
Published in: Open Research Europe, Issue 3, 2024, Page(s) 81, ISSN 2732-5121
Publisher: London, UK: F1000 Research Limited
DOI: 10.12688/openreseurope.15789.2

Electronic-Structure Properties from Atom-Centered Predictions of the Electron Density (opens in new window)

Author(s): Andrea Grisafi; Alan M. Lewis; Mariana Rossi; Michele Ceriotti
Published in: Journal of Chemical Theory and Computation, Issue 19, 2023, Page(s) 4451, ISSN 1549-9618
Publisher: American Chemical Society
DOI: 10.1021/acs.jctc.2c00850

Adaptive energy reference for machine-learning models of the electronic density of states (opens in new window)

Author(s): Wei Bin How, Sanggyu Chong, Federico Grasselli, Kevin K. Huguenin-Dumittan, Michele Ceriotti
Published in: Physical Review Materials, Issue 9, 2025, ISSN 2475-9953
Publisher: APS
DOI: 10.1103/physrevmaterials.9.013802

i-PI 3.0: A flexible and efficient framework for advanced atomistic simulations (opens in new window)

Author(s): Yair Litman, Venkat Kapil, Yotam M. Y. Feldman, Davide Tisi, Tomislav Begušić, Karen Fidanyan, Guillaume Fraux, Jacob Higer, Matthias Kellner, Tao E. Li, Eszter S. Pós, Elia Stocco, George Trenins, Barak Hirshberg, Mariana Rossi, Michele Ceriotti
Published in: The Journal of Chemical Physics, Issue 161, 2024, ISSN 0021-9606
Publisher: American Institute of Physics
DOI: 10.1063/5.0215869

"Thermal conductivity of <mml:math xmlns:mml=""http://www.w3.org/1998/Math/MathML""><mml:mrow><mml:msub><mml:mi>Li</mml:mi><mml:mn>3</mml:mn></mml:msub><mml:msub><mml:mi>PS</mml:mi><mml:mn>4</mml:mn></mml:msub></mml:mrow></mml:math> solid electrolytes with <i>ab initio</i> accuracy" (opens in new window)

Author(s): Davide Tisi, Federico Grasselli, Lorenzo Gigli, Michele Ceriotti
Published in: Physical Review Materials, Issue 8, 2024, ISSN 2475-9953
Publisher: ACS
DOI: 10.1103/physrevmaterials.8.065403

Ranking the synthesizability of hypothetical zeolites with the sorting hat (opens in new window)

Author(s): B. A. Helfrecht, G. Pireddu, R. Semino, S. M. Auerbach, and M. Ceriotti
Published in: Digital Discovery, Issue 1, 2022, Page(s) 779, ISSN 2635-098X
Publisher: Royal Society of Chemistry
DOI: 10.1039/d2dd00056c

A smooth basis for atomistic machine learning (opens in new window)

Author(s): F. Bigi, K. K. Huguenin-Dumittan, M. Ceriotti, and D. E. Manolopoulos, J. Chem
Published in: Journal Of Chemical Physics, 2022, ISSN 0021-9606
Publisher: American Institute of Physics
DOI: 10.1063/5.0124363

A data-driven interpretation of the stability of organic molecular crystals (opens in new window)

Author(s): R. K. Cersonsky, M. Pakhnova, E. A. Engel, and M. Ceriotti
Published in: Chemical Science, 2023, ISSN 2041-6520
Publisher: Royal Society of Chemistry
DOI: 10.1039/d2sc06198h

Searching for OpenAIRE data...

There was an error trying to search data from OpenAIRE

No results available

My booklet 0 0