Project description
A combined approach to enhancing modelling of material properties
Machine learning enhances material predictive modelling, reducing the time it takes to investigate the physical, chemical and mechanical properties of materials from years to months. However, current machine learning simulations cannot sufficiently address modern modelling challenges that involve complex materials in realistic conditions. Interdisciplinary research that spans machine learning, quantum mechanical and statistical mechanical methods could help further develop the potential of machine learning. The goal of the EU-funded FIAMMA project is to create a "plug-and-play" framework that allows machine learning to be seamlessly combined with physics-based modelling. The integration of the three approaches should greatly extend the reach of atomistic simulations, allowing accurate insights into the role of inductive and deductive paradigms in theory and modelling.
Objective
Computer simulations of molecules and materials are undergoing a profound transformation. Machine learning (ML) has become essential to extend the reach and increase the predictive power of atomic-scale modeling. The potential of ML in association with quantum mechanical (QM) and statistical mechanical (SM) methods has been shown, but the link has been rather superficial, due to the complex, interdisciplinary effort needed to combine the three approaches. Without full convergence, ML-powered simulations cannot address modern modeling challenges, which involve complex materials in realistic conditions, and require increasingly predictive accuracy.
The objective of this project is to create a “plug and play” framework by which ML can be seamlessly combined with physics-based modeling, substituting individual steps of a QM calculation, or making direct predictions across complex SM workflows. Full integration of the three approaches will greatly extend the reach of atomistic simulations, and allow an insightful critical comparison of the role of inductive and deductive paradigms in theory and modeling. The development of an open-source software that unifies QM, SM and ML shall facilitate early adoption and broaden impact. We will demonstrate the benefits of our integrated framework through two challenging and compelling platform problems: (i) investigating stabilities and properties of flexible drug-like molecules and assemblies, and (ii) discovering fundamental structure-activity relationships of porous aluminosilicates for clean chemical technologies.
Critical knowledge gaps that will be filled include: (1) the description of long-range physics within the same conceptual framework that has been used for short-range interactions; (2) the symmetry-adapted representation of input and outputs of each step of a QM calculation; and (3) the rigorous characterization of SM ensembles to enable end-to-end predictions of equilibrium properties with uncertainty quantification.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2020-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
1015 LAUSANNE
Switzerland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.