Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Cosmochronology within the stellar neighbourhood: Leaving no star and planet behind

Project description

Getting ahead of stellar evolution

For the first time in history, the European Space Agency's spacecraft Gaia is attempting to create the largest, most precise 3D map of our galaxy, the Milky Way. While this has yielded an almost complete census of stars and white dwarfs within 100 pc, a complete understanding of the local stellar population is still a major challenge. The EU-funded MOS100PC project is proposing a novel and ambitious method to improve our knowledge of single and binary stellar evolution focusing on stellar ages. This will shed light on the great potential of using stellar remnants as cosmic clocks to trace local stellar formation history. Further analysis will also help us comprehend the chemical and dynamical evolution of the Milky Way on a larger scale.

Objective

The stellar population near the Sun, which contains the brightest specimens of almost all types of stars and planets, is a key research area that remains poorly explored. The spacecraft Gaia has provided, for the first time, a near complete census of stars and white dwarfs within 100 pc, but a full understanding of the local stellar population is still a major challenge. From this project and my involvement in the next generation multi-object spectroscopic surveys 4MOST and WEAVE, I will obtain medium resolution optical spectroscopy of all stars within 100 pc. I will also conduct theoretical development to improve our understanding of how white dwarf and low-mass star evolve. Modelling the combined astrometric, photometric and spectroscopic data for these 400,000 stellar objects, including crucial sub-samples of wide binaries as well as white dwarfs with well constrained ages, I propose a novel and ambitious method to improve our knowledge of single and binary stellar evolution with a particular focus on stellar ages. This will unlock the enormous potential of using stellar remnants as cosmic clocks to trace the local stellar formation history for the Galactic disk, halo and associated clusters, which will help to comprehend the chemical and dynamical evolution of the Milky Way on a larger scale. The assembly of galaxies like our own is itself paramount to understand the evolution of the low redshift Universe. I will also study evolved planetary systems that are currently being accreted in the convection zone of their white dwarf hosts, providing a direct and unique window into the beginning and evolution of rocky planet formation in our Galaxy. The project will be at the forefront of the stellar revolution triggered by Gaia and multi-object spectroscopic surveys, as well as major forthcoming and deeper surveys such as LSST and Euclid.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-COG - Consolidator Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2020-COG

See all projects funded under this call

Host institution

UNIVERSITY OF WARWICK
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 999 338,00
Address
KIRBY CORNER ROAD UNIVERSITY HOUSE
CV4 8UW COVENTRY
United Kingdom

See on map

Region
West Midlands (England) West Midlands Coventry
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 999 338,00

Beneficiaries (1)

My booklet 0 0