Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Glioma on a chip: Probing Glioma Cell Invasion and Gliomagenesis on a Multiplexed Chip

Project description

An in vitro 3D model of glioma

Gliomas are the most common primary brain tumours and emerge from the supporting tissue of the brain. However, the lack of appropriate disease models has hampered the testing of new drug candidates. Using a bottom-up engineering approach and microfluidics, the EU-funded GliomaChip project proposes to develop 3D micro-patterned cellular constructs that can be exploited to study various aspects of glioma biology, including migration and angiogenesis. The long-term plan is to construct an in vitro 3D glioma-on-a-chip model mimicking the complex in vivo microenvironment of glioma that can be used to test new drugs and improve the management of patients.

Objective

28% of all primary brain tumors and central nervous system tumors and 80% of malignant tumors are gliomas, which arise from the supportive tissues in the brain. Yet, our ability to effectively treat these cancers is limited by our knowledge of the disease and our ability to test new treatments on accurate models. Advances in microfluidics and cell encapsulation within hydrogels have made significant strides in trying to meet these needs, but the potential to use these technologies for engineering physiologically relevant tissue models has yet to be fully realized. Here, we propose to investigate cancer biology using a microfluidic device with three-dimensional (3D) micro-patterned cellular constructs that may be subjected to flow through microfluidic channels. Using the developed model, we aim to understand the cellular gliomagenesis, glioma cell migration, and angiogenesis and further test drug susceptibility to demonstrate the relevance of the proposed model. To achieve these goals, I have formulated an innovative and interdisciplinary strategy based on my research experience in bottom-up tissue engineering and microfluidics, and brought together a strong team. First, I will receive an intensive training at the Max Planck Institute for Intelligent Systems on micro-robotics to strengthen the bridge between the fields of micro-robotics and bottom-up tissue engineering. Then, I will get a training at the Harvard Medical School on glioma cell culture and cell extraction from a mouse model. Finally, all these efforts will be integrated into the development of an in vitro 3D glioma-on-a-chip model mimicking the complex in vivo microenvironment of glioma. The successful completion of this timely and innovative project will result in an advanced microphysiological system that will contribute to the competitiveness of Europe in the fields of cancer management, pharmaceutics, and personalized medicine.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-WF-2018-2020

See all projects funded under this call

Coordinator

KOC UNIVERSITY
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 157 355,52
Address
RUMELI FENERI YOLU SARIYER
34450 Istanbul
Türkiye

See on map

Region
İstanbul İstanbul İstanbul
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 157 355,52
My booklet 0 0