Project description
Understanding the structure of collisionless shocks
Shock waves are present in air and water on Earth and a wide range of plasmas in the universe. These are generally collisionless plasmas. The EU-funded SHARP project intends to contribute to understanding of the structure of collisionless shocks in diverse environments and the acceleration processes at all shock stages. The project will intensify exploitation of the heliospheric data and perform an inclusive comparative analysis of the Earth bow and planetary and interplanetary shocks. SHARP will combine the findings from in situ measurements of heliospheric and supernovae remnant shocks with remote observation of distant astrophysical shocks. The project will also develop a high-level database of shocks and innovative instruments for the shock analysis.
Objective
"SHARP aims to achieve a major leap in understanding of the structure of collisionless shocks in various environments and of the acceleration processes at all shock scales. This will be done by: (a) intensifying exploitation of the heliospheric data and performing a comprehensive comparative analysis of the Earth bow shock, planerary shocks, and interplanetary shocks, (b) establishing a collaboration of the world renown groups working together on all aspects of the shock physics, (c) utilizing and combining the knowledge obtained in in situ measurements on heliospheric shocks and in remote observations of distant astrophysical shocks, and (d) developing a high-level databases of shocks and advanced tools for the shock analysis and making them public. The research will encompass the three ""pillars"" of the shock physics: the shock structure, the shock energy deposition, and the radiation from the shock energized particles. The study will address the most fundamental unsolved issues of the shock physics: the structural changes of the shock with the increase of the Mach number, the intimate relation between the shock fields and the particle distributions, the injection problem, and the electron acceleration puzzle. The research will bridge over the in situ observed heliospheric shocks and supernovae remnant (SNR) shocks which are observed only indirectly, by emission from energized particles, by combining the knowledge of the heliospheric shock structure and constraints provided by the radiation measurements from SNR shocks. Starting with the observational data, the research will ultimately provide new diagnostic measures for the ongoing and future experiments, such that will allow to improve the efficiency of the measurements and data analysis, contribute to understanding of solar wind interaction with the Earth, and advance understanding of the most powerful accelerators in the Universe."
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences computer and information sciences data science
- natural sciences computer and information sciences databases
- natural sciences physical sciences astronomy galactic astronomy solar physics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.2.1.6. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies – Space
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.2.1.6.3. - Enabling exploitation of space data
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-SPACE-2018-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
00560 Helsinki
Finland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.