Project description
New and improved imitation learning framework
With the increasing demand for robotics in industrial and many other sectors worldwide, innovations in the field of robotics are much sought after. However, the field of robotics currently faces many challenges, ranging from design to skill learning; overcoming these challenges is imperative for progress to be achieved in this field. The EU-funded RobotSL project will provide an improved and optimised imitation learning methodology for robots to improve skill learning. This methodology will allow for more adaptable skills enabling robots to work in several different sectors and complete a more varied set of tasks.
Objective
In this project, I will develop an imitation learning framework for robot skill learning and optimization, aiming at endowing robots with versatile skills and thus allowing robots to work in broad application domains. This framework will handle various constraints (e.g. robot joint limit, trajectory smoothness, obstacle avoidance) that robots encounter in practice, exploit environmental priors and multi-modal properties underlying human demonstrations, as well as design a low-level optimal controller so as to drive robots to execute human-like motions and resist external perturbations. The project objectives and associated concepts are original and novel. This project will provide the first solution for the problem of imitation learning with various constraints (including linear and non-linear, convex and non-convex constraints) and a novel concept of semi-imitation learning by exploring environmental priors. Moreover, it will provide a solution to multi-modal imitation learning from few demonstrations, which can be readily combined with constrained learning and environmental priors. In addition, from a control perspective, this project will study a new concept of control-inspired imitation learning to mimic both human skills and human reactions under perturbations. This project is challenging in the sense that it involves robotics, imitation learning, probability theory, optimization, semi-supervised learning, clustering techniques and optimal control. I will work closely with Prof. Cohn, who is an expert in knowledge representation and reasoning. This fellowship will sharpen my research skills and extend my research network in Leeds and Europe. Specifically, this fellowship will enable me to dive deeper into the challenging but essential problems in robot imitation learning, which will provide new insights and research topics to the community of robot learning, positioning me as a competitive researcher in the community.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences computer and information sciences artificial intelligence machine learning semisupervised learning
- natural sciences computer and information sciences knowledge engineering
- natural sciences mathematics applied mathematics statistics and probability
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering robotics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
LS2 9JT Leeds
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.