Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Minimum degree conditions for tight Hamilton cycles and spanning spheres

Objetivo

One of the most exciting developments in the second half of the last century in combinatorial research has been the search for Hamilton cycles in graphs and hypergraphs. Since the decision problem, whether a given graph contains a Hamilton cycle, is computationally intractable, no `simple' characterization for their existence is known. The main approach to finding Hamilton cycles has thus focused on natural sufficient conditions. A classic example for this is Dirac's theorem, which provides optimal minimum degree conditions for the existence of a Hamilton cycle in graphs.

The aim of this project is to resolve several problems regarding hypergraph analogues of Dirac's theorem. The proposed research considers two natural generalization of cycles: (i) Tight cycles, which have been extensively researched in the past two decades, and (ii) Spheres, a topological generalization of cycles, which was suggested by Brown, Erdős and Sós in the Seventies and has recently resurfaced in extremal graph theory. To determine optimal minimum degree conditions for spanning tight cycles and spheres, the experienced researcher plans to develop new techniques based on hypergraph regularity and combinatorial optimization, which will likely find application beyond the proposed research.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Palabras clave

Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

Ver todos los proyectos financiados en el marco de este régimen de financiación

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

(se abrirá en una nueva ventana) H2020-MSCA-IF-2020

Ver todos los proyectos financiados en el marco de esta convocatoria

Coordinador

UNIVERSITY OF HAMBURG
Aportación neta de la UEn

Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.

€ 174 806,40
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

€ 174 806,40
Mi folleto 0 0