Project description
New statistical methods to reduce uncertainty in Big Data analytics
Large-scale data are usually messy: the fraction of data inaccuracies increases with data volume growth. Reliable conclusions may be difficult to derive when data are collected under different conditions, or when certain data are missing or corrupted. The EU-funded RobustStats project aims to develop robust statistical methodology and theory to address Big Data challenges. In the context of transfer learning, researchers will leverage proper methods to exploit the distributions between the source and target domains. In addition, they will test missing data mechanisms and provide practical tools to handle both missing and heterogeneous data in classification labels. Ultimately, data perturbation will be introduced for robust inference with large-scale data.
Objective
Modern technology allows large-scale data to be collected in many new forms, and their underlying generating mechanisms can be extremely complex. In fact, an interesting (and perhaps initially surprising) feature of large-scale data is that it is often much harder to feel confident that one has identified a plausible statistical model. This is largely because there are so many forms of model violation and both visual and more formal statistical checks can become infeasible. It is therefore vital for trust in conclusions drawn from large studies that statisticians ensure that their methods are robust. The RobustStats proposal will introduce new statistical methodology and theory for a range of important contemporary Big Data challenges. In transfer learning, we wish to make inference about a target data population, but some (typically, most) of our training data come from a related but distinct source distribution. The central goal is to find appropriate ways to exploit the relationship between the source and target distributions. Missing and corrupted data play an ever more prominent role in large-scale data sets because the proportion of cases with no missing attributes is typically small. We will address key challenges of testing the form of the missingness mechanism, and handling heterogeneous missingness and corruptions in classification labels. The robustness of a statistical procedure is intimately linked to model misspecification. We will advocate for two approaches to studying model misspecification, one via the idea of regarding an estimator as a projection onto a model, and the other via oracle inequalities. Finally, we will introduce new methods for robust inference with large-scale data based on the idea of data perturbation. Such approaches are attractive ways of exploring a space of distributions in a model-free way, and we will show that aggregation of the results of carefully-selected perturbations can be highly effective.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2020-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
CB2 1TN CAMBRIDGE
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.