Descrizione del progetto
Nuovi metodi statistici per ridurre l’incertezza nell’analisi dei megadati
I dati su larga scala sono solitamente caotici, e la percentuale di inesattezze che li interessano aumenta parallelamente alla crescita del volume di dati. Quando i dati vengono raccolti in condizioni diverse, oppure nel caso in cui alcuni di essi siano mancanti o danneggiati, può risultare difficile trarre conclusioni affidabili. Il progetto RobustStats, finanziato dall’UE, intende sviluppare una teoria e una metodologia statistica solida per affrontare le sfide associate ai megadati. Nell’ambito dell’apprendimento per trasferimento, i ricercatori sfrutteranno metodi adeguati volti a sfruttare le distribuzioni tra i domini di origine e di destinazione. Inoltre, il team di ricerca testerà i meccanismi di dati mancanti e fornirà strumenti pratici per gestire sia i dati mancanti, sia quelli eterogenei nelle etichette di classificazione. Infine, verrà introdotta la perturbazione dei dati per un’interferenza solida con i dati su larga scala.
Obiettivo
Modern technology allows large-scale data to be collected in many new forms, and their underlying generating mechanisms can be extremely complex. In fact, an interesting (and perhaps initially surprising) feature of large-scale data is that it is often much harder to feel confident that one has identified a plausible statistical model. This is largely because there are so many forms of model violation and both visual and more formal statistical checks can become infeasible. It is therefore vital for trust in conclusions drawn from large studies that statisticians ensure that their methods are robust. The RobustStats proposal will introduce new statistical methodology and theory for a range of important contemporary Big Data challenges. In transfer learning, we wish to make inference about a target data population, but some (typically, most) of our training data come from a related but distinct source distribution. The central goal is to find appropriate ways to exploit the relationship between the source and target distributions. Missing and corrupted data play an ever more prominent role in large-scale data sets because the proportion of cases with no missing attributes is typically small. We will address key challenges of testing the form of the missingness mechanism, and handling heterogeneous missingness and corruptions in classification labels. The robustness of a statistical procedure is intimately linked to model misspecification. We will advocate for two approaches to studying model misspecification, one via the idea of regarding an estimator as a projection onto a model, and the other via oracle inequalities. Finally, we will introduce new methods for robust inference with large-scale data based on the idea of data perturbation. Such approaches are attractive ways of exploring a space of distributions in a model-free way, and we will show that aggregation of the results of carefully-selected perturbations can be highly effective.
Campo scientifico (EuroSciVoc)
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione
Siamo spiacenti… si è verificato un errore inatteso durante l’esecuzione.
È necessario essere autenticati. La sessione potrebbe essere scaduta.
Grazie per il tuo feedback. Riceverai presto un'e-mail di conferma dell'invio. Se hai scelto di ricevere una notifica sullo stato della segnalazione, sarai contattato anche quando lo stato della segnalazione cambierà.
Parole chiave
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Programma(i)
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
PROGRAMMA PRINCIPALE
Vedi tutti i progetti finanziati nell’ambito di questo programma
Argomento(i)
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Meccanismo di finanziamento
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
ERC-ADG - Advanced Grant
Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento
Invito a presentare proposte
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
(si apre in una nuova finestra) ERC-2020-ADG
Vedi tutti i progetti finanziati nell’ambito del bandoIstituzione ospitante
Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.
CB2 1TN CAMBRIDGE
Regno Unito
I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.