Project description
Innovative materials provide artificial muscles with lifelike motion
The development of ‘artificial muscles’ is gaining ground thanks to technological advances in the fields of robotics and medicine. While actuator devices (converting energy into motion) are important in everyday life, they cannot provide soft, smooth, noiseless movement mimicking human motion and dexterity. The EU-funded E-MOTION project will develop innovative macroscopic-scale soft materials relying on switchable spin crossover molecules with remarkable actuating performances. Using a pioneering combination of materials engineering methods, the project will provide the switchable materials with electrical actuation, self-sensing and energy harvesting properties. Having a firm grasp of the relationship between their in-depth structure and mechanical property, E-MOTION will use the materials as the basis to develop original fibre-braided actuators as well as 3D-printed microfluidic actuator devices.
Objective
Actuator devices converting energy into motion are a fundamental part of everyday life. However, there is currently an unmet need in actuation technologies to provide soft, smooth, noiseless movement that can mimic human motion and dexterity. The development of such “artificial muscles” is burgeoning in both interest and importance as it would enable significant advances in areas as important as robotics, medicine and aeronautics. To enable a step-change in this field, E·MOTION proposes to develop unprecedented macroscopic-scale soft materials based on switchable spin crossover molecules with remarkable actuating performances. Using an innovative combination of material engineering methods these materials will be endowed with electrical actuation, self-sensing and energy harvesting properties, which will be a major breakthrough. More fundamentally, E·MOTION aims at understanding in-depth structure vs. mechanical property relationships in these switchable materials, which is essential for processing and optimizing their function. A multiscale experimental and theoretical approach will be used to assess how the molecular deformation and change in molecular connectivity under external stimuli affect macroscopic mechanical properties as well as the cycle life. Finally, E·MOTION will take a major shift on the side of actuator design by the development of original fibre-braided actuators as well as 3D-printed, microfluidic actuator devices made of these materials. These advanced actuator designs will then be thoroughly analysed for their ability to mimic complex muscular schemes. This ambitious, multidisciplinary project that brings together various aspects of molecular and polymer chemistry, condensed matter physics, mechanical engineering and advanced manufacturing, will enable a new departure in my career and a significant leap forward in the state-of-the-art that shall expedite the societal exploitation of these novel, molecule-based actuator technologies.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering robotics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2020-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75794 PARIS
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.