Project description
Probing the composition of gas and ice that makes new planets
Planets form, migrate and acquire their elemental composition in disks of gas and dust orbiting nascent stars. The next years will offer huge observational improvements at infrared wavelengths to study the inner disk, out to radii equivalent to Saturn's orbit in our solar system, a key region for planet formation. Most notably, the just-launched James Webb Space Telescope offers unique diagnostics of the gas and ice. The EU-funded project MOLDISK will analyse emerging data to enhance understanding of the linked chemistry and physics of young and mature disks. The aim is to identify key processes, including the role of dust traps and snowlines, that control the composition of the material that ultimately makes up planets.
Objective
The heavy elements (C, O, N) in exoplanetary atmospheres result from accretion of gas and impacts of icy pebbles and planetesimals in disks around young stars. The gas and dust, in turn, originate from the collapsing cloud that formed the star plus disk, with icy grains growing, settling and drifting in radially to the planet-forming zones. The inner disk (0.1-10 au) is a key region in planet formation, yet its physical and chemical structure is still poorly constrained observationally. The next years offer huge observational improvements at infrared wavelengths, which is the primary regime to study inner disks. Most notably, JWST offers unique diagnostics of gas and ice at unprecedented sensitivity and sharpness. The applicant has been heavily involved in planning and building of JWST-MIRI for the past 25 years, and co-leads GTO programs on protostars and protoplanetary disks.
This proposal requests funding for 2 postdocs and 3 PhD students to carry out an interdisciplinary program that analyses MIRI data as soon as they arrive by mid-2022, and makes crucial connections with ALMA and VLT(I) data, state-of-the-art disk models developed by the applicant’s team, and laboratory experiments on ices. The specific goals are to (i) determine the chemical inventory of gas in inner disks, and measure C/O/N/H ratios in exoplanet birth environments; (ii) relate differences in chemical composition between disks to locations of dust traps, icy pebble sublimation at snowlines, and presence of cavities; (iii) compare the chemical properties of young embedded disks with mature disks, and establish the role of accretion shocks may have on their composition; (iv) determine the abundances of ice species, including the presence of more complex icy molecules, as well as their chemistry from envelopes to disks; and (v) find indirect evidence for the presence of young unseen (massive) planets. MOLDISK will train a next generation of mid-IR scientists, important for ELT and SPICA.
Fields of science
Programme(s)
Topic(s)
Funding Scheme
ERC-ADG - Advanced GrantHost institution
2311 EZ Leiden
Netherlands