Project description
Establishment and modulation of the scaling during epithelial tissue development
Biological systems are organised according to their size, and their scaling is an essential characteristic of life forms. The study of scaling properties provides a better understanding of animal physiology, cell cycle regulation, intracellular dynamics and gene expression. The EU-funded Scaling-Sensitivity project will elucidate how cell size rulers are established in epithelial tissues and their dynamics in the spatiotemporal regulation of morphogenesis and proliferation in the developing organism. To do so, the project will utilise live imaging, genetics, transcriptomics, physical modelling and the recent progress in mechanical force sensing. Additionally, the study will explore the systemic hormonal and local tissue timers’ modulation of these cell rulers to control the temporal regulation of tissue dynamics.
Objective
All biological systems tailor their organization and properties to their size. Such size scaling is essential to The scaling of biological structures and substructures with their size is a preeminent and essential feature of life. Accordingly, the study of scaling properties had a profound impact on our understanding of animal physiology, gene expression, cell cycle regulation and intracellular dynamics. Their study at the cell level has often led to the discovery of the fundamental mechanisms allowing cells to probe their size or geometry (cell size ruler). Yet we are very far from understanding how such cell size ruler controls more macroscopic processes such as morphogenesis or global tissue size. Building on interdisciplinary methods (live-imaging, genetics, physical modeling, transcriptomics) and on the recent progresses in mechanical force sensing, we aim to understand how cell size rulers are generated in epithelial tissues and how they are modulating in time to account for the spatiotemporal regulation morphogenesis and proliferation of developing organism. More specifically, working from the cell to the tissue levels, we explore how the interplay between two fundamental and prevalent structures, actomyosin stress fibers and tricellular junctions, define an internal cell ruler probing cell size in the control of epithelial morphogenesis, signalling and proliferation. Conversely, we will explore how systemic hormonal or local tissue timers modulate such internal cell rulers to control the temporal regulation of tissue dynamics. Thereby we will understand how tissue and organismal level regulation could impact on cell size rules to control the temporal dynamics of tissues. By focusing on both the genetic and mechanical regulation at different length-scales (cytoskeleton, cell, and tissue) and time-scales (seconds to hours), we expect to provide novel and fundamental insights into the spatiotemporal mechanisms governing the dynamics of biological structures.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2020-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75794 PARIS
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.