Project description
Deep neural networks in bioimaging applications
Deep neural networks (DNNs) are computational models where many simple processing units work in parallel in interconnected layers. A DNN performs particular tasks through training, learning the strength of connections between units. DNNs show the capability of improving the quality of biomedical image reconstruction. However, the main objection concerns the difficulty to control the Lipschitz constant of current neural architectures, meaning that a small perturbation of the input can result in a huge deviation of the output, negatively impacting image reconstruction. The EU-funded FunLearn project proposes to address this issue with the use of much shallower networks, which are easier to control. The approach relies on functional optimisation to improve learning architectures, and the development of specific neural networks to solve problems in biomedical imaging.
Objective
This research program is motivated by the remarkable ability of deep neural networks to improve the quality of biomedical image reconstruction. While the results reported so far are extremely encouraging, serious reservations have been voiced pertaining to the stability of these tools and the extent to which we can trust their output. The main concern is that it is very difficult to control the Lipschitz constant of the current neural architectures. This means that a small perturbation of the input can result in a huge deviation of the output, which can have devastating effects in the context of image reconstruction. We believe that the remedy lies in the use of much shallower networks, which are easier to control. However, a reduction in the number of layers will degrade the performance, unless we augment the sophistication of the primary modules; in particular, the nonlinear ones. By drawing on our career-long experience with splines, we therefore propose to rely on the powerful tools of functional optimization to improve learning architectures. This will allow us to develop two novel approaches to learning: sparse simplicial splines, and hierarchical spline networks—an extension of the popular deep ReLU neural networks In parallel, we shall develop specific neural networks to solve two outstanding problems in biomedical imaging: - A “best-of-both-worlds” approach to biomedical image reconstruction, involving the stable integration of state-of-the-art physics-based solvers with the new tools of machine learning; - The 3D reconstruction of the entire manifold of configurations of a biomolecule from a large collection of very low-dose cryo-electron tomograms. This goal, which may be viewed as the Graal of structural biology, has remained elusive so far and calls for an entirely new paradigm for single-particle analysis.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2020-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
1015 LAUSANNE
Switzerland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.