Description du projet
Les réseaux de neurones profonds dans les applications de bio-imagerie
Les réseaux de neurones profonds (DNN pour «deep neural network») sont des modèles informatiques où de nombreuses unités de traitement simples fonctionnent en parallèle dans des couches interconnectées. Un DNN effectue des tâches particulières grâce à son entraînement, qui lui permet d’apprendre la force des connexions entre les unités. Les DNN sont capables d’améliorer la qualité de la reconstruction des images biomédicales. Le principal écueil tient toutefois au fait qu’il est difficile de contrôler la constante de Lipschitz des architectures neuronales actuelles. Autrement dit, une petite perturbation des entrées peut se traduire par un écart énorme en sortie, ce qui a un impact négatif sur la reconstruction des images. Le projet FunLearn, financé par l’UE, propose de résoudre ce problème en utilisant des réseaux beaucoup moins profonds, plus faciles à contrôler. Son approche est basée sur l’optimisation fonctionnelle, pour améliorer les architectures d’apprentissage, et sur le développement de réseaux neuronaux spécifiques, pour résoudre les problèmes d’imagerie biomédicale.
Objectif
This research program is motivated by the remarkable ability of deep neural networks to improve the quality of biomedical image reconstruction. While the results reported so far are extremely encouraging, serious reservations have been voiced pertaining to the stability of these tools and the extent to which we can trust their output. The main concern is that it is very difficult to control the Lipschitz constant of the current neural architectures. This means that a small perturbation of the input can result in a huge deviation of the output, which can have devastating effects in the context of image reconstruction. We believe that the remedy lies in the use of much shallower networks, which are easier to control. However, a reduction in the number of layers will degrade the performance, unless we augment the sophistication of the primary modules; in particular, the nonlinear ones. By drawing on our career-long experience with splines, we therefore propose to rely on the powerful tools of functional optimization to improve learning architectures. This will allow us to develop two novel approaches to learning: sparse simplicial splines, and hierarchical spline networks—an extension of the popular deep ReLU neural networks In parallel, we shall develop specific neural networks to solve two outstanding problems in biomedical imaging: - A “best-of-both-worlds” approach to biomedical image reconstruction, involving the stable integration of state-of-the-art physics-based solvers with the new tools of machine learning; - The 3D reconstruction of the entire manifold of configurations of a biomolecule from a large collection of very low-dose cryo-electron tomograms. This goal, which may be viewed as the Graal of structural biology, has remained elusive so far and calls for an entirely new paradigm for single-particle analysis.
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Nous sommes désolés... Une erreur inattendue s’est produite.
Vous devez être authentifié. Votre session a peut-être expiré.
Merci pour votre retour d'information. Vous recevrez bientôt un courriel confirmant la soumission. Si vous avez choisi d'être informé de l'état de la déclaration, vous serez également contacté lorsque celui-ci évoluera.
Mots‑clés
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
PROGRAMME PRINCIPAL
Voir tous les projets financés dans le cadre de ce programme
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
ERC-ADG - Advanced Grant
Voir tous les projets financés dans le cadre de ce programme de financement
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
(s’ouvre dans une nouvelle fenêtre) ERC-2020-ADG
Voir tous les projets financés au titre de cet appelInstitution d’accueil
La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.
1015 LAUSANNE
Suisse
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.