Project description
Deep learning that constantly self-upgrades
Deep learning technology is changing our lives by using data according to the standard machine learning paradigm and building on them. The training data are assumed to be stationary and representative for data that will be seen during the deployment of the system. Therefore, complications appear when data distributions change over time. This requires new deep learning methods to enable constant updating of models based on the current stream of data available. The EU-funded KeepOnLearning project tackles this ambitious goal through fundamental research to overcome crucial limitations of the current machine learning paradigm. By using existing expertise, the project will design machine learning systems that continuously learn and systematically improve their skills, always remaining current.
Objective
Data is key for modern AI solutions, especially deep learning. Unfortunately, the data-driven nature of deep learning that makes it so powerful when dealing with complex and high-dimensional data, is also at the core of its main weakness: a model is only as good as the data it builds on. In this project, we want to tackle some strong limitations inherent to the standard machine learning paradigm, which makes restrictive assumptions that are problematic in many real-world (“in the wild”) conditions. By addressing these, we want to make a fundamental step towards more powerful deep learning systems that can learn continuously and know how to adapt as new data becomes available, in the context of computer vision.
Traditional deep learning relies on the training data being representative for data encountered during system deployment. This is perfect when working with stationary datasets. Yet in practice, data distributions are often non-stationary, i.e. they change over time. This can have a multitude of reasons – think of social trends, seasonal or geographic variations. This calls for a new generation of deep learning methods, able to adapt to new conditions by continuously updating the models based on new training data becoming available. Learning from non-stationary streaming data is, however, still a major challenge requiring fundamental research. In this project, we build on our earlier expertise in continual learning, to realize this ambitious goal.
If successful, this will lead to machine learning systems that keep on learning over time, systematically improving their skills and never getting outdated. It also may lower the threshold for applying machine learning, as it reduces the need for a skilled data scientist carefully preparing the data beforehand. As a practical application, we plan to showcase our work’s feasibility, scalability and flexibility in the context of automatic generation of audio descriptions of videos for the visually impaired.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2020-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
3000 LEUVEN
Belgium
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.