Descripción del proyecto
Un aprendizaje profundo en mejora continua
La tecnología del aprendizaje profundo está cambiando nuestras vidas al utilizar los datos según el paradigma del aprendizaje automático estándar y basarse en ellos. Se supone que los datos de entrenamiento son estacionarios y representativos de los datos que se verán durante el despliegue del sistema. Por lo tanto, las complicaciones surgen cuando las distribuciones de los datos cambian con el tiempo. Esto requiere nuevos métodos de aprendizaje profundo que permitan la actualización constante de los modelos en función del flujo actual de datos disponibles. En el proyecto KeepOnLearning, financiado con fondos europeos, se aborda este ambicioso objetivo mediante la investigación fundamental para superar las limitaciones cruciales del paradigma actual de aprendizaje automático. Utilizando los conocimientos especializados existentes, en el proyecto se diseñarán sistemas de aprendizaje automático que aprenden continuamente y mejoran sistemáticamente sus capacidades, manteniéndose siempre actualizados.
Objetivo
Data is key for modern AI solutions, especially deep learning. Unfortunately, the data-driven nature of deep learning that makes it so powerful when dealing with complex and high-dimensional data, is also at the core of its main weakness: a model is only as good as the data it builds on. In this project, we want to tackle some strong limitations inherent to the standard machine learning paradigm, which makes restrictive assumptions that are problematic in many real-world (“in the wild”) conditions. By addressing these, we want to make a fundamental step towards more powerful deep learning systems that can learn continuously and know how to adapt as new data becomes available, in the context of computer vision.
Traditional deep learning relies on the training data being representative for data encountered during system deployment. This is perfect when working with stationary datasets. Yet in practice, data distributions are often non-stationary, i.e. they change over time. This can have a multitude of reasons – think of social trends, seasonal or geographic variations. This calls for a new generation of deep learning methods, able to adapt to new conditions by continuously updating the models based on new training data becoming available. Learning from non-stationary streaming data is, however, still a major challenge requiring fundamental research. In this project, we build on our earlier expertise in continual learning, to realize this ambitious goal.
If successful, this will lead to machine learning systems that keep on learning over time, systematically improving their skills and never getting outdated. It also may lower the threshold for applying machine learning, as it reduces the need for a skilled data scientist carefully preparing the data beforehand. As a practical application, we plan to showcase our work’s feasibility, scalability and flexibility in the context of automatic generation of audio descriptions of videos for the visually impaired.
Palabras clave
Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
Programa(s)
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
PROGRAMA PRINCIPAL
Ver todos los proyectos financiados en el marco de este programa
Tema(s)
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Régimen de financiación
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
ERC-ADG - Advanced Grant
Ver todos los proyectos financiados en el marco de este régimen de financiación
Convocatoria de propuestas
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
(se abrirá en una nueva ventana) ERC-2020-ADG
Ver todos los proyectos financiados en el marco de esta convocatoriaInstitución de acogida
Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.
3000 LEUVEN
Bélgica
Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.